Nonlinear whistler instability driven by a beamlike distribution of resonant electrons

被引:8
|
作者
Lampe, Martin [1 ]
Joyce, Glenn [2 ]
Manheimer, Wallace M. [3 ]
Ganguli, Gurudas [1 ]
机构
[1] USN, Res Lab, Div Plasma Phys, Washington, DC 20375 USA
[2] Univ Maryland, College Pk, MD 20740 USA
[3] Icarus Res Inc, Bethesda, MD 20814 USA
关键词
cyclotron resonance; geomagnetic variations; plasma instability; plasma nonlinear processes; plasma simulation; radiation belts; whistlers; WAVE-PARTICLE INTERACTIONS; DISCRETE VLF EMISSIONS; SELF-CONSISTENT THEORY; COMPUTER-SIMULATIONS; ELECTROSTATIC-WAVES; SIPLE-STATION; MODE WAVES; MAGNETOSPHERE; GROWTH;
D O I
10.1063/1.3298733
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Theory and simulation are used to study the instability of a coherent whistler parallel-propagating in a simplified model radiation belt with a background of cold electrons, as well as a ring distribution of energetic electrons. A nonlinear instability is initiated at the location z(+), where the electrons are cyclotron resonant with the wave, on the side of the equator (z=0) where the wave is propagating away from the equator. The instability propagates backward toward the equator, growing both spatially and temporally. As the instability develops, frequency falls in such a way as to keep the electrons nearly resonant with the waves over the entire region 0 < z < z(+). The instability causes a sharp drop in the pitch angle of the resonant electrons and eventually saturates with peak amplitude near the equator.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Nonlinear saturation of whistler modes driven by runaway electrons
    Breizman, B. N.
    Kiramov, D. I.
    PHYSICS OF PLASMAS, 2023, 30 (08)
  • [2] Whistler Fan Instability Driven by Strahl Electrons in the Solar Wind
    Vasko, I. Y.
    Krasnoselskikh, V
    Tong, Y.
    Bale, S. D.
    Bonnell, W.
    Mozer, F. S.
    ASTROPHYSICAL JOURNAL LETTERS, 2019, 871 (02)
  • [3] Whistler instability threshold condition of energetic electrons by kappa distribution in space plasmas
    Xiao, Fuliang
    Zhou, Qinghua
    Zheng, Huinan
    Wang, Shui
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2006, 111 (A8)
  • [4] Fast transport of resonant electrons in phase space due to nonlinear trapping by whistler waves
    Artemyev, A. V.
    Vasiliev, A. A.
    Mourenas, D.
    Agapitov, O. V.
    Krasnoselskikh, V.
    Boscher, D.
    Rolland, G.
    GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (16) : 5727 - 5733
  • [5] NONLINEAR INSTABILITY OF WHISTLER WAVE
    HASEGAWA, A
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1970, 51 (11): : 804 - &
  • [6] Nonlinear Resonant Interactions of Radiation Belt Electrons with Intense Whistler-Mode Waves
    Artemyev, A. V.
    Mourenas, D.
    Zhang, X. -j.
    Agapitov, O.
    Neishtadt, A. I.
    Vainchtein, D. L.
    Vasiliev, A. A.
    Zhang, X.
    Ma, Q.
    Bortnik, J.
    Krasnoselskikh, V. V.
    SPACE SCIENCE REVIEWS, 2025, 221 (01)
  • [7] Whistler Instability Driven by Electron Thermal Ring Distribution With Magnetospheric Application
    Yoon, P. H.
    Lee, Junggi
    Hwang, Junga
    Seough, J.
    Choe, G. S.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2019, 124 (07) : 5289 - 5301
  • [8] Theoretical model of the nonlinear resonant interaction of whistler-mode waves and field-aligned electrons
    Artemyev, A., V
    Neishtadt, A., I
    Albert, J. M.
    Gan, L.
    Li, W.
    Ma, Q.
    PHYSICS OF PLASMAS, 2021, 28 (05)
  • [9] Nonlinear Landau resonant interaction between whistler waves and electrons: Excitation of electron-acoustic waves
    Ma, Donglai
    An, Xin
    Artemyev, Anton
    Bortnik, Jacob
    Angelopoulos, Vassilis
    Zhang, Xiao-Jia
    PHYSICS OF PLASMAS, 2024, 31 (02)
  • [10] NONLINEAR EVOLUTION OF WHISTLER WAVE MODULATIONAL INSTABILITY
    KARPMAN, VI
    LYNOV, JP
    MICHELSEN, PK
    RASMUSSEN, JJ
    PHYSICS OF PLASMAS, 1995, 2 (09) : 3302 - 3319