Detection of space infrared weak target based on YOLOv4

被引:5
|
作者
Liu Yang-fan [1 ,2 ,3 ]
Cao Li-hua [1 ,3 ]
Li Ning [1 ,2 ]
Zhang Yun-feng [1 ,2 ]
机构
[1] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] State Key Lab Laser Interact Matter, Changchun 130033, Peoples R China
基金
中国国家自然科学基金;
关键词
target recognition; infrared weak target; deep learning; YOLOv4; model;
D O I
10.37188/CJLCD.2020-0227
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
In the problem of space infrared weak target detection, traditional algorithms such as correlation template method and center of gravity, etc. have a low discrimination rate and high data quality requirements. To solve this problem, the space infrared weak target detection algorithm based on improved YOLOv4 is proposed in this paper. The algorithm first establishes corresponding data sets for different infrared targets in space. Based on YOLOv4, a special neural network framework for space target detection tasks is established. The k-means clustering algorithm is used to reconstruct the prior frame, and multi-scale fusion is designed according to the characteristics of infrared weak targets to improve the detection accuracy of weak targets. Finally, COCO data set and the infrared image data set collected in the laboratory are used to train the algorithm and test. The test results show that the improved algorithm has a significant improvement in the accuracy of detection compared with the YOLOv4 algorithm. Its average accuracy (AP) can reach more than 93.25%, and the detection speed has reached 38.99 ms/frame, which verifies that the effectiveness of target detection satisfies the needs of space infrared weak target detection tasks.
引用
收藏
页码:615 / 623
页数:9
相关论文
共 14 条
  • [1] Analysis of new top-hat transformation and the application for infrared dim small target detection
    Bai, Xiangzhi
    Zhou, Fugen
    [J]. PATTERN RECOGNITION, 2010, 43 (06) : 2145 - 2156
  • [2] Barnett J T, 1989, P SPIE, V1050
  • [3] Bochkovskiy A., 2020, YOLOV4 OPTIMAL SPEED, DOI DOI 10.48550/ARXIV.2004.10934,ARXIV
  • [4] The nonsubsampled contourlet transform: Theory, design, and applications
    da Cunha, Arthur L.
    Zhou, Jianping
    Do, Minh N.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (10) : 3089 - 3101
  • [5] Ding Peng, 2016, Chinese Journal of Liquid Crystals and Displays, V31, P793, DOI 10.3788/YJYXS20163108.0793
  • [6] [侯旺 Hou Wang], 2015, [红外技术, Infrared Technology], V37, P1
  • [7] Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)
    Klionsky, Daniel J.
    Abdelmohsen, Kotb
    Abe, Akihisa
    Abedin, Md Joynal
    Abeliovich, Hagai
    Arozena, Abraham Acevedo
    Adachi, Hiroaki
    Adams, Christopher M.
    Adams, Peter D.
    Adeli, Khosrow
    Adhihetty, Peter J.
    Adler, Sharon G.
    Agam, Galila
    Agarwal, Rajesh
    Aghi, Manish K.
    Agnello, Maria
    Agostinis, Patrizia
    Aguilar, Patricia V.
    Aguirre-Ghiso, Julio
    Airoldi, Edoardo M.
    Ait-Si-Ali, Slimane
    Akematsu, Takahiko
    Akporiaye, Emmanuel T.
    Al-Rubeai, Mohamed
    Albaiceta, Guillermo M.
    Albanese, Chris
    Albani, Diego
    Albert, Matthew L.
    Aldudo, Jesus
    Alguel, Hana
    Alirezaei, Mehrdad
    Alloza, Iraide
    Almasan, Alexandru
    Almonte-Beceril, Maylin
    Alnemri, Emad S.
    Alonso, Covadonga
    Altan-Bonnet, Nihal
    Altieri, Dario C.
    Alvarez, Silvia
    Alvarez-Erviti, Lydia
    Alves, Sandro
    Amadoro, Giuseppina
    Amano, Atsuo
    Amantini, Consuelo
    Ambrosio, Santiago
    Amelio, Ivano
    Amer, Amal O.
    Amessou, Mohamed
    Amon, Angelika
    An, Zhenyi
    [J]. AUTOPHAGY, 2016, 12 (01) : 1 - 222
  • [8] LIU Y, 2019, J TERAHERTZ SCI ELEC, P118
  • [9] [马立 Ma Li], 2020, [光学精密工程, Optics and Precision Engineering], V28, P988
  • [10] A FREQUENCY-DOMAIN ALGORITHM FOR MULTIFRAME DETECTION AND ESTIMATION OF DIM TARGETS
    PORAT, B
    FRIEDLANDER, B
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1990, 12 (04) : 398 - 401