PROPAGATION OF CHAOS FOR TOPOLOGICAL INTERACTIONS

被引:11
|
作者
Degond, P. [1 ]
Pulvirenti, M. [2 ]
机构
[1] Imperial Coll London, Dept Math, London SW7 2AZ, England
[2] Univ Aquila, Int Res Ctr Math & Mech Complex Syst MEMOCS, I-67100 Laquila, Italy
来源
ANNALS OF APPLIED PROBABILITY | 2019年 / 29卷 / 04期
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
Rank-based interactions; Boltzmann equation; BOLTZMANN-GRAD LIMIT; MEAN-FIELD LIMIT; GLOBAL VALIDITY; RARE-GAS; EQUATIONS; SYSTEMS; CONVERGENCE; PARTICLES; FLOCKING; FORCES;
D O I
10.1214/19-AAP1469
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a N-particle model describing an alignment mechanism due to a topological interaction among the agents. We show that the kinetic equation, expected to hold in the mean-field limit N -> infinity, as following from the previous analysis in (J. Stat. Phys. 163 (2016) 41-60) can be rigorously derived. This means that the statistical independence (propagation of chaos) is indeed recovered in the limit, provided it is assumed at time zero.
引用
收藏
页码:2594 / 2612
页数:19
相关论文
共 50 条
  • [1] Propagation of chaos for topological interactions by a coupling technique
    Degond, Pierre
    Pulvirenti, Mario
    Rossi, Stefano
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2023, 34 (03) : 641 - 655
  • [2] PROPAGATION OF CHAOS AND HYDRODYNAMIC DESCRIPTION FOR TOPOLOGICAL MODELS
    Benedetto, Dario
    Paul, Thierry
    Rossi, Stefano
    KINETIC AND RELATED MODELS, 2025, 18 (01) : 19 - 34
  • [3] DIFFUSION WITH INTERACTIONS AND COLLISIONS BETWEEN COLORED PARTICLES AND THE PROPAGATION OF CHAOS
    NAGASAWA, M
    TANAKA, H
    PROBABILITY THEORY AND RELATED FIELDS, 1987, 74 (02) : 161 - 198
  • [4] Propagation of Chaos of Forward–Backward Stochastic Differential Equations with Graphon Interactions
    Erhan Bayraktar
    Ruoyu Wu
    Xin Zhang
    Applied Mathematics & Optimization, 2023, 88
  • [5] Measuring topological chaos
    Thiffeault, JL
    PHYSICAL REVIEW LETTERS, 2005, 94 (08)
  • [6] Chaos in Topological Foliations
    Zhukova N.I.
    Levin G.S.
    Tonysheva N.S.
    Journal of Mathematical Sciences, 2024, 282 (3) : 337 - 361
  • [7] Chaos in Topological Modules
    Javier Garcia-Pacheco, Francisco
    AXIOMS, 2022, 11 (10)
  • [8] Controlling electron propagation on a topological insulator surface via proximity interactions
    Li, Xiaodong
    Duan, Xiaopeng
    Kim, Ki Wook
    PHYSICAL REVIEW B, 2014, 89 (04):
  • [9] Propagation of Chaos of Forward-Backward Stochastic Differential Equations with Graphon Interactions
    Bayraktar, Erhan
    Wu, Ruoyu
    Zhang, Xin
    APPLIED MATHEMATICS AND OPTIMIZATION, 2023, 88 (01):
  • [10] STRONG CONVERGENCE OF PROPAGATION OF CHAOS FOR MCKEAN-VLASOV SDES WITH SINGULAR INTERACTIONS
    Hao, Zimo
    Rockner, Michael
    Zhang, Xicheng
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (02) : 2661 - 2713