Photonic-aware neural networks

被引:21
|
作者
Paolini, Emilio [1 ,2 ,3 ]
De Marinis, Lorenzo [1 ]
Cococcioni, Marco [4 ]
Valcarenghi, Luca [1 ]
Maggiani, Luca [3 ]
Andriolli, Nicola [2 ]
机构
[1] Scuola Super Sant Anna, I-56124 Pisa, Italy
[2] Natl Res Council Italy, Inst Elect Comp & Telecommun Engn CNR IEIIT, I-56122 Pisa, Italy
[3] Sma RTy Italia Srl, I-20061 Carugate, Italy
[4] Univ Pisa, Dept Informat Engn, I-56122 Pisa, Italy
来源
NEURAL COMPUTING & APPLICATIONS | 2022年 / 34卷 / 18期
关键词
Photonic neural networks; Analog computations; Effective number of bits; Quantization; ARTIFICIAL-INTELLIGENCE;
D O I
10.1007/s00521-022-07243-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Photonics-based neural networks promise to outperform electronic counterparts, accelerating neural network computations while reducing power consumption and footprint. However, these solutions suffer from physical layer constraints arising from the underlying analog photonic hardware, impacting the resolution of computations (in terms of effective number of bits), requiring the use of positive-valued inputs, and imposing limitations in the fan-in and in the size of convolutional kernels. To abstract these constraints, in this paper we introduce the concept of Photonic-Aware Neural Network (PANN) architectures, i.e., deep neural network models aware of the photonic hardware constraints. Then, we devise PANN training schemes resorting to quantization strategies aimed to obtain the required neural network parameters in the fixed-point domain, compliant with the limited resolution of the underlying hardware. We finally carry out extensive simulations exploiting PANNs in image classification tasks on well-known datasets (MNIST, Fashion-MNIST, and Cifar-10) with varying bitwidths (i.e., 2, 4, and 6 bits). We consider two kernel sizes and two pooling schemes for each PANN model, exploiting 2 x 2 and 3 x 3 convolutional kernels, and max and average pooling, the latter more amenable to an optical implementation. 3 x 3 kernels perform better than 2 x 2 counterparts, while max and average pooling provide comparable results, with the latter performing better on MNIST and Cifar-10. The accuracy degradation due to the photonic hardware constraints is quite limited, especially on MNIST and Fashion-MNIST, demonstrating the feasibility of PANN approaches on computer vision tasks.
引用
收藏
页码:15589 / 15601
页数:13
相关论文
共 50 条
  • [1] Photonic-aware neural networks
    Emilio Paolini
    Lorenzo De Marinis
    Marco Cococcioni
    Luca Valcarenghi
    Luca Maggiani
    Nicola Andriolli
    Neural Computing and Applications, 2022, 34 : 15589 - 15601
  • [2] Photonic-aware Neural Networks for Packet Classification in URLLC scenarios
    Paolini, Emilio
    Civerchia, Federico
    De Marinis, Lorenzo
    Valcarenghi, Luca
    Maggiani, Luca
    Andriolli, Nicola
    2022 IEEE 23RD INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE SWITCHING AND ROUTING (IEEE HPSR), 2022, : 218 - 223
  • [3] CHARLES: A C plus plus fixed-point library for Photonic-Aware Neural Networks
    Paolini, Emilio
    De Marinis, Lorenzo
    Maggiani, Luca
    Cococcioni, Marco
    Andriolli, Nicola
    NEURAL NETWORKS, 2023, 162 (531-540) : 531 - 540
  • [4] Activation Stretching for Tackling Noise in Photonic Aware Neural Networks
    Paolini, E.
    De Marinis, L.
    Valcarenghi, L.
    Maggiani, L.
    Andriolli, N.
    2024 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION, OFC, 2024,
  • [5] Quantization-aware training for low precision photonic neural networks
    Kirtas, M.
    Oikonomou, A.
    Passalis, N.
    Mourgias-Alexandris, G.
    Moralis-Pegios, M.
    Pleros, N.
    Tefas, A.
    NEURAL NETWORKS, 2022, 155 : 561 - 573
  • [6] A Robust, Quantization-Aware Training Method for Photonic Neural Networks
    Oikonomou, A.
    Kirtas, M.
    Passalis, N.
    Mourgias-Alexandris, G.
    Moralis-Pegios, M.
    Pleros, N.
    Tefas, A.
    ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EAAAI/EANN 2022, 2022, 1600 : 427 - 438
  • [7] Mixed-precision quantization-aware training for photonic neural networks
    Kirtas, Manos
    Passalis, Nikolaos
    Oikonomou, Athina
    Moralis-Pegios, Miltos
    Giamougiannis, George
    Tsakyridis, Apostolos
    Mourgias-Alexandris, George
    Pleros, Nikolaos
    Tefas, Anastasios
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (29): : 21361 - 21379
  • [8] Mixed-precision quantization-aware training for photonic neural networks
    Manos Kirtas
    Nikolaos Passalis
    Athina Oikonomou
    Miltos Moralis-Pegios
    George Giamougiannis
    Apostolos Tsakyridis
    George Mourgias-Alexandris
    Nikolaos Pleros
    Anastasios Tefas
    Neural Computing and Applications, 2023, 35 : 21361 - 21379
  • [9] Physics-Aware Analytic-Gradient Training of Photonic Neural Networks
    Zhan, Yuancheng
    Zhang, Hui
    Lin, Hexiang
    Chin, Lip Ket
    Cai, Hong
    Karim, Muhammad Faeyz
    Poenar, Daniel Puiu
    Jiang, Xudong
    Mak, Man-Wai
    Kwek, Leong Chuan
    Liu, Ai Qun
    LASER & PHOTONICS REVIEWS, 2024, 18 (04)
  • [10] Photonic neural networks
    Damien Woods
    Thomas J. Naughton
    Nature Physics, 2012, 8 : 257 - 259