Roulette inflation with Kahler moduli and their axions

被引:95
|
作者
Bond, J. Richard
Kofman, Lev
Prokushkin, Sergey
Vaudrevange, Pascal M.
机构
[1] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada
[2] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada
来源
PHYSICAL REVIEW D | 2007年 / 75卷 / 12期
关键词
D O I
10.1103/PhysRevD.75.123511
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study 2-field inflation models based on the "large-volume" flux compactification of type IIB string theory. The role of the inflaton is played by a Kahler modulus tau corresponding to a 4-cycle volume and its axionic partner theta. The freedom associated with the choice of Calabi-Yau manifold and the nonperturbative effects defining the potential V(tau,theta) and kinetic parameters of the moduli brings an unavoidable statistical element to theory prior probabilities within the low-energy landscape. The further randomness of (tau,theta) initial conditions allows for a large ensemble of trajectories. Features in the ensemble of histories include "roulette trajectories," with long-lasting inflations in the direction of the rolling axion, enhanced in the number of e-foldings over those restricted to lie in the tau-trough. Asymptotic flatness of the potential makes possible an eternal stochastic self-reproducing inflation. A wide variety of potentials and inflaton trajectories agree with the cosmic microwave background and large scale structure data. In particular, the observed scalar tilt with weak or no running can be achieved in spite of a nearly critical de Sitter deceleration parameter and consequently a low gravity wave power relative to the scalar curvature power.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Kahler moduli inflation
    Conlon, JP
    Quevedo, F
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2006, (01): : 3729 - 3743
  • [2] Kahler moduli inflation revisited
    Blanco-Pillado, Jose J.
    Buck, Duncan
    Copeland, Edmund J.
    Gomez-Reino, Marta
    Nunes, Nelson J.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2010, (01):
  • [3] Accidental Kahler moduli inflation
    Maharana, Anshuman
    Rummel, Markus
    Sumitomo, Yoske
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2015, (09):
  • [4] Kahler moduli inflation revisited
    Jose J. Blanco-Pillado
    Duncan Buck
    Edmund J. Copeland
    Marta Gomez-Reino
    Nelson J. Nunes
    [J]. Journal of High Energy Physics, 2010
  • [5] Kahler moduli double inflation
    Kawasaki, Masahiro
    Miyamoto, Koichi
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2011, (02):
  • [6] Reheating constraints on Kahler moduli inflation
    Kabir, Rakesh
    Mukherjee, Amitabha
    Lohiya, Daksh
    [J]. MODERN PHYSICS LETTERS A, 2019, 34 (15)
  • [7] Constrains on Kahler moduli inflation from reheating
    Bhattacharya, Sukannya
    Dutta, Koushik
    Maharana, Anshuman
    [J]. PHYSICAL REVIEW D, 2017, 96 (08)
  • [8] Confronting kahler moduli inflation with CMB data
    Bhattacharya, Sukannya
    Dutta, Koushik
    Gangopadhy, Mayukh Raj
    Maharana, Anshuman
    [J]. PHYSICAL REVIEW D, 2018, 97 (12)
  • [9] KAHLER MODULI INFLATION AND WMAP7
    Lee, Sunggeun
    Nam, Soonkeon
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2011, 26 (06): : 1073 - 1096
  • [10] Metastable SUSY breaking, de Sitter moduli stabilisation and Kahler moduli inflation
    Krippendorf, Sven
    Quevedo, Fernando
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2009, (11):