Ambipolar nonvolatile memory based on a quantum-dot transistor with a nanoscale floating gate

被引:13
|
作者
Che, Yongli [1 ,2 ]
Zhang, Yating [1 ,2 ]
Cao, Xiaolong [1 ,2 ,3 ]
Song, Xiaoxian [1 ,2 ]
Cao, Mingxuan [1 ,2 ]
Dai, Haitao [4 ]
Yang, Junbo [5 ]
Zhang, Guizhong [1 ,2 ]
Yao, Jianquan [1 ,2 ]
机构
[1] Tianjin Univ, Coll Precis Instruments & Optoelect Engn, Inst Laser & Optoelect, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Minist Educ, Key Lab Optoelect Informat Technol, Tianjin 300072, Peoples R China
[3] Shandong Univ Sci & Technol, Coll Mech & Elect Engn, Qingdao 266590, Peoples R China
[4] Tianjin Univ, Sch Sci, Tianjin Key Lab Low Dimens Mat Phys & Preparing T, Tianjin 300072, Peoples R China
[5] Natl Univ Def Technol, Ctr Mat Sci, Changsha 410073, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
VOLTAGE; LAYER;
D O I
10.1063/1.4955452
中图分类号
O59 [应用物理学];
学科分类号
摘要
Using only solution processing methods, we developed ambipolar quantum-dot (QD) transistor floating-gate memory (FGM) that uses Au nanoparticles as a floating gate. Because of the bipolarity of the active channel of PbSe QDs, the memory could easily trap holes or electrons in the floating gate by programming/erasing (P/E) operations, which could shift the threshold voltage both up and down. As a result, the memory exhibited good programmable memory characteristics: a large memory window (Delta Vth similar to 15 V) and a long retention time (>10(5) s). The magnitude of Delta Vth depended on both P/E voltages and the bias voltage (V-DS): Delta Vth was a cubic function to V-P/E and linearly depended on V-DS. Therefore, this FGM based on a QD transistor is a promising alternative to its inorganic counterparts owing to its advantages of bipolarity, high mobility, low cost, and large-area production. Published by AIP Publishing.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Modeling of nonvolatile floating gate quantum dot memory
    Hasaneen, ES
    Heller, E
    Bansal, R
    Huang, W
    Jain, F
    [J]. SOLID-STATE ELECTRONICS, 2004, 48 (10-11) : 2055 - 2059
  • [2] Ambipolar organic thin-film transistor-based nano-floating-gate nonvolatile memory
    Han, Jinhua
    Wang, Wei
    Ying, Jun
    Xie, Wenfa
    [J]. APPLIED PHYSICS LETTERS, 2014, 104 (01)
  • [3] Ambipolar Quantum-Dot-Based Low-Voltage Nonvolatile Memory with Double Floating Gates
    Zhang, Heng
    Zhang, Yating
    Yu, Yu
    Song, Xiaoxian
    Zhang, Haiting
    Cao, Mingxuan
    Che, Yongli
    Dai, Haitao
    Yang, Junbo
    Yao, Jianquan
    [J]. ACS PHOTONICS, 2017, 4 (09): : 2220 - 2227
  • [4] Nonvolatile floating gate organic memory device based on pentacene/CdSe quantum dot heterojuction
    Shin, Ik-Soo
    Kim, Jung-Min
    Jeun, Jun-Ho
    Yoo, Seok-Hyun
    Ge, Ziyi
    Hong, Jong-In
    Bang, Jin Ho
    Kim, Yong-Sang
    [J]. APPLIED PHYSICS LETTERS, 2012, 100 (18)
  • [5] Nonvolatile quantum dot memory (NVQDM) in floating gate configuration: Device and circuit modeling
    Hasaneen, E
    Rodriguez, A
    Yarlagadda, B
    Jain, F
    Heller, E
    Huang, W
    Lee, J
    Papadimitrakopoulos, F
    [J]. 2003 THIRD IEEE CONFERENCE ON NANOTECHNOLOGY, VOLS ONE AND TWO, PROCEEDINGS, 2003, : 741 - 744
  • [6] High-Performance Nonvolatile Organic Transistor Memory Using Quantum Dots-Based Floating Gate
    Hu, Daobing
    Zhang, Guocheng
    Yang, Huihuang
    Zhang, Jun
    Chen, Cihai
    Lan, Shuqiong
    Chen, Huipeng
    Guo, Tailiang
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2017, 64 (09) : 3816 - 3821
  • [7] Multilevel storage and photoinduced-reset memory by an inorganic perovskite quantum-dot/polystyrene floating-gate organic transistor
    Jin, Risheng
    Wang, Jin
    Shi, Keli
    Qiu, Beibei
    Ma, Lanchao
    Huang, Shihua
    Li, Zhengquan
    [J]. RSC ADVANCES, 2020, 10 (70) : 43225 - 43232
  • [8] Nanoparticle floating-gate transistor memory based on solution processed ambipolar organic semiconductor
    Sun, Sheng
    Zhang, Shengdong
    [J]. 2020 INTERNATIONAL CONFERENCE ON ENERGY, ENVIRONMENT AND BIOENGINEERING (ICEEB 2020), 2020, 185
  • [9] Quantum Dot Channel (QDC) Field Effect Transistors (FETs) and Floating Gate Nonvolatile Memory Cells
    Kondo, J.
    Lingalugari, M.
    Chan, P. -Y.
    Heller, E.
    Jain, F.
    [J]. JOURNAL OF ELECTRONIC MATERIALS, 2015, 44 (09) : 3188 - 3193
  • [10] Quantum Dot Channel (QDC) Field Effect Transistors (FETs) and Floating Gate Nonvolatile Memory Cells
    J. Kondo
    M. Lingalugari
    P.-Y. Chan
    E. Heller
    F. Jain
    [J]. Journal of Electronic Materials, 2015, 44 : 3188 - 3193