Analytical and numerical bifurcation analysis of dislocation pattern formation of the Walgraef-Aifantis model

被引:6
|
作者
Spiliotis, Konstantinos G. [1 ]
Russo, Lucia [2 ]
Siettos, Constantinos [3 ]
Aifantis, Elias C. [1 ,4 ,5 ,6 ,7 ]
机构
[1] Aristotle Univ Thessaloniki, Lab Mech & Mat, Thessaloniki 54124, Greece
[2] CNR, Ist Ric Combust, Naples, Italy
[3] Natl Tech Univ Athens, Sch Appl Math & Phys Sci, Athens 15780, Greece
[4] Michigan Technol Univ, Houghton, MI 49931 USA
[5] ITMO Univ, St Petersburg 197101, Russia
[6] Togliatti State Univ, Tolyatti 445020, Russia
[7] Beijing Univ Civil Engn & Architecture, Beijing 100044, Peoples R China
关键词
Dislocations; Pattern formation; Turing instabilities; Numerical analysis; SPATIOTEMPORAL DYNAMICS; COLLECTIVE BEHAVIOR; LENGTH-SCALE; SLIP; DEFORMATION; STABILITY; SIMULATION; DENSITY; ORGANIZATION; MICRO;
D O I
10.1016/j.ijnonlinmec.2018.03.002
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We analyze the pattern formation due to dislocations under cyclic loading resulting from the Walgraef-Aifantis model. The model consists of a set of partial differential equations of the reaction-diffusion type in the one dimensional finite space with two different diffusion-like coefficients, for the mobile (free to move when the applied resolved shear stress in the slip plane exceeds a certain threshold) and for the immobile (of slow movement or trapped) dislocations. We derive analytically the Turing spatial and Andronov-Hopf temporal instabilities emanating from the homogeneous solutions and construct the complete bifurcation diagram of the far-from-equilibrium spatio-temporal patterns, with respect to the applied stress and the size of the domain. Finally, we analyze the symmetric properties of all branches of both steady and oscillating far-from-equilibrium regimes.
引用
收藏
页码:41 / 52
页数:12
相关论文
共 50 条
  • [1] Pattern Formation in the Brusselator Model Using Numerical Bifurcation Analysis
    Nazimuddin, A. K. M.
    Ali, Md Showkat
    [J]. PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2019, 51 (11): : 31 - 39
  • [2] Numerical bifurcation analysis of the pattern formation in a cell based auxin transport model
    Delphine Draelants
    Jan Broeckhove
    Gerrit T. S. Beemster
    Wim Vanroose
    [J]. Journal of Mathematical Biology, 2013, 67 : 1279 - 1305
  • [3] Numerical bifurcation analysis of the pattern formation in a cell based auxin transport model
    Draelants, Delphine
    Broeckhove, Jan
    Beemster, Gerrit T. S.
    Vanroose, Wim
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2013, 67 (05) : 1279 - 1305
  • [4] Numerical bifurcation analysis and pattern formation in a minimal reaction-diffusion model for vegetation
    Kabir, M. Humayun
    Gani, M. Osman
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2022, 536
  • [5] Using Numerical Bifurcation Analysis to Study Pattern Formation in Mussel Beds
    Sherratt, J. A.
    [J]. Mathematical Modelling of Natural Phenomena, 2016, 11 (05) : 86 - 102
  • [6] Analytical and numerical bifurcation analysis of a forest ecosystem model with human interaction
    Spiliotis, Konstantinos
    Russo, Lucia
    Giannino, Francesco
    Siettos, Constantinos
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2021, 55 : S653 - S675
  • [7] NUMERICAL COMPUTATION OF BIFURCATION PHENOMENA AND PATTERN-FORMATION IN COMBUSTION
    BAYLISS, A
    MATKOWSKY, BJ
    MINKOFF, M
    [J]. NUMERICAL COMBUSTION, 1989, 351 : 187 - 198
  • [8] Bifurcation analysis of Liesegang ring pattern formation
    Lebedeva, MI
    Vlachos, DG
    Tsapatsis, M
    [J]. PHYSICAL REVIEW LETTERS, 2004, 92 (08)
  • [9] Empirical bifurcation analysis of optical pattern formation
    Neubecker, R
    Benkler, E
    [J]. PHYSICAL REVIEW E, 2002, 65 (06):
  • [10] A MECHANICAL MODEL FOR BIOLOGICAL PATTERN-FORMATION - A NONLINEAR BIFURCATION-ANALYSIS
    MAINI, PK
    MURRAY, JD
    OSTER, GF
    [J]. LECTURE NOTES IN MATHEMATICS, 1985, 1151 : 253 - 269