ON COMMUTATIVE HOMOGENEOUS VECTOR BUNDLES ATTACHED TO NILMANIFOLDS

被引:0
|
作者
Diaz Martin, Rocio [1 ,2 ]
Saal, Linda [2 ]
机构
[1] Consejo Nacl Invest Cient & Tecn, Cordoba, Spain
[2] Univ Nacl Cordoba, Cordoba, Spain
来源
REVISTA DE LA UNION MATEMATICA ARGENTINA | 2021年 / 62卷 / 01期
关键词
SPHERICAL ANALYSIS; REPRESENTATIONS;
D O I
10.33044/revuma.1738
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The notion of Gelfand pair (G,K) can be generalized by considering homogeneous vector bundles over G/K instead of the homogeneous space G/K and matrix-valued functions instead of scalar-valued functions. This gives the definition of commutative homogeneous vector bundles. Being a Gelfand pair is a necessary condition for being a commutative homogeneous vector bundle. In the case when G/K is a nilmanifold having square-integrable representations, a big family of commutative homogeneous vector bundles was determined in [Transform. Groups 24 (2019), no. 3, 887-911]. In this paper we complete that classification.
引用
收藏
页码:141 / 151
页数:11
相关论文
共 50 条