Control of diameter and numerical aperture of microlens by a single ultra-short laser pulse

被引:33
|
作者
Fan, Hua [1 ]
Cao, Xiao-Wen [2 ]
Wang, Lei [1 ]
Li, Zhen-Ze [1 ]
Chen, Qi-Dai [1 ]
Juodkazis, Saulius [3 ,4 ]
Sun, Hong-Bo [5 ]
机构
[1] Jilin Univ, Coll Elect Sci & Engn, State Key Lab Integrated Optoeletron, Changchun 130012, Jilin, Peoples R China
[2] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Zhejiang, Peoples R China
[3] Swinbume Univ Technol, Fac Sci Engn & Technol, Ctr Microphoton, Hawthorn, Vic 3122, Australia
[4] ANFF, Melbourne Ctr Nano Fabricat, 151 Wellington Rd, Clayton, Vic 3168, Australia
[5] Tsinghua Univ, Dept Precis Instrument, State Key Lab Precis Measurement Technol & Instru, Beijing 100084, Peoples R China
基金
澳大利亚研究理事会; 美国国家科学基金会;
关键词
HIGH-ASPECT-RATIO; FABRICATION; ARRAY; BESSEL; MICROFABRICATION; CHANNELS; GLASSES; LIGHT; BEAMS;
D O I
10.1364/OL.44.005149
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate a versatile method for fast and flexible fabrication of either one or an array of microlenses. Multi-foci axial intensity distribution generated by a phase pattern displayed on a spatial light modulator irradiates silica, causing ablation and its internal modification. The following wet etching step defines the diameter r, while the radius of curvature R (hence, the focal length f) is maintained the same. As a result, the numerical aperture NA = r/f changes from 0.2 to 0.4 for the same pulse energy (but different number of multi-foci) during ablation. An isotropic wet etching of silica becomes highly anisotropic for the initial stages of etching following the irradiated pattern. Subsequent evolution of the shape is governed by an isotropic silica etch and forms a spherical lens. This method can be extended to other materials and geometries of micro-optical elements. (C) 2019 Optical Society of America
引用
收藏
页码:5149 / 5152
页数:4
相关论文
共 50 条
  • [1] Optimized single amplified ultra-short laser pulse
    Chen, Junewen
    Chuang, Kai-Chun
    [J]. SOLID STATE LASERS AND AMPLIFIERS III, 2008, 6998
  • [2] Control of reaction channels of CsI molecule by ultra-short laser pulse
    熊德林
    王美山
    杨传路
    童小菲
    马宁
    [J]. Chinese Physics B, 2010, 19 (10) : 229 - 233
  • [3] Advances in ultra-short laser pulse technology
    White, Michael D.
    Carroll, David L.
    Zimmerman, Joseph W.
    [J]. AEROSPACE AMERICA, 2017, 55 (11) : 27 - 27
  • [4] Control of reaction channels of CsI molecule by ultra-short laser pulse
    Xiong De-Lin
    Wang Mei-Shan
    Yang Chuan-Lu
    Tong Xiao-Fei
    Ma Ning
    [J]. CHINESE PHYSICS B, 2010, 19 (10)
  • [5] Ultra-short pulse characterization using a reference laser pulse
    Ozcan, A
    Digonnet, MJF
    Kino, GS
    [J]. Laser Resonators and Beam Control VIII, 2005, 5708 : 140 - 150
  • [6] Repetitive single amplified high intensity ultra-short pulse laser system
    Chen, Junewen
    Chuang, Kai-Chun
    [J]. NOISE AND FLUCTUATIONS IN PHOTONICS, QUANTUM OPTICS, AND COMMUNICATIONS, 2007, 6603
  • [7] Ultra-short pulse laser interaction with transparent dielectrics
    Feit, MD
    Komashko, AM
    Rubenchik, AM
    [J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2004, 79 (07): : 1657 - 1661
  • [8] Molecular dynamics and control following excitation with an ultra-short intense laser pulse
    Sun, ZG
    Lou, N
    Nyman, G
    [J]. CHEMICAL PHYSICS, 2005, 308 (03) : 317 - 323
  • [9] Dental tissue processing with ultra-short pulse laser
    Rubenchik, AM
    daSilva, LB
    Feit, MD
    Lane, S
    London, R
    Perry, MD
    Stuart, BC
    Neev, J
    [J]. LASERS IN DENTISTRY II, PROCEEDINGS OF, 1996, 2672 : 222 - 230
  • [10] The mechanism of ablation of sapphire by an ultra-short pulse laser
    Li, XX
    Jia, TQ
    Feng, DH
    Xu, ZZ
    [J]. ACTA PHYSICA SINICA, 2004, 53 (07) : 2154 - 2158