Constraining the shape of a gravity anomalous body using reversible jump Markov chain Monte Carlo

被引:28
|
作者
Luo, Xiaolin [1 ]
机构
[1] CSIRO Math Informat & Stat, N Ryde, NSW 1670, Australia
关键词
Numerical solutions; Inverse theory; Gravity anomalies and Earth structure; INVERSE PROBLEMS; MODELS;
D O I
10.1111/j.1365-246X.2009.04479.x
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Typical geophysical inversion problems are ill-posed, non-linear and non-unique. Sometimes the problem is trans-dimensional, where the number of unknown parameters is one of the unknowns, which makes the inverse problem even more challenging. Detecting the shape of a geophysical object underneath the earth surface from gravity anomaly is one of such complex problems, where the number of geometrical parameters is one of the unknowns. To deal with the difficulties of non-uniqueness, ill-conditioning and non-linearity, a statistical Bayesian model inference approach is adopted. A reversible jump Markov chain Monte Carlo (RJMCMC) algorithm is proposed to overcome the difficulty of trans-dimensionality. Carefully designed within-model and between-model Markov chain moves are implemented to reduce the rate of generating inadmissible geometries, thus achieving good overall efficiency in the Monte Carlo sampler. Numerical experiments on a 2-D problem show that the proposed algorithm is capable of obtaining satisfactory solutions with quantifiable uncertainty to a challenging trans-dimensional geophysical inverse problem. Solutions from RJMCMC appear to be parsimonious for the given prior, in the sense that among the models satisfactorily represent the true model, models with higher posterior probabilities tend to have fewer number of parameters. The proposed numerical algorithm can be readily adapted to other similar trans-dimensional geophysical inverse applications.
引用
收藏
页码:1067 / 1079
页数:13
相关论文
共 50 条
  • [1] Reversible Jump Markov Chain Monte Carlo for Deconvolution
    Dongwoo Kang
    Davide Verotta
    [J]. Journal of Pharmacokinetics and Pharmacodynamics, 2007, 34 : 263 - 287
  • [2] Reversible jump Markov chain Monte Carlo for deconvolution
    Kang, Dongwoo
    Verotta, Davide
    [J]. JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2007, 34 (03) : 263 - 287
  • [3] Model choice using reversible jump Markov chain Monte Carlo
    Hastie, David I.
    Green, Peter J.
    [J]. STATISTICA NEERLANDICA, 2012, 66 (03) : 309 - 338
  • [4] Multiple Damage Identification Using the Reversible Jump Markov Chain Monte Carlo
    Tiboaca, Daniela
    Barthorpe, Robert J.
    Antoniadou, Ifigeneia
    Worden, Keith
    [J]. STRUCTURAL HEALTH MONITORING 2015: SYSTEM RELIABILITY FOR VERIFICATION AND IMPLEMENTATION, VOLS. 1 AND 2, 2015, : 2374 - 2382
  • [5] An extension of reversible jump Markov Chain Monte Carlo in Hidden Markov Models
    Zhou, Feifei
    Chen, Jinwen
    [J]. Proceedings of the Fifth International Conference on Information and Management Sciences, 2006, 5 : 559 - 563
  • [6] Bayesian Multiple Emitter Fitting using Reversible Jump Markov Chain Monte Carlo
    Mohamadreza Fazel
    Michael J. Wester
    Hanieh Mazloom-Farsibaf
    Marjolein B. M. Meddens
    Alexandra S. Eklund
    Thomas Schlichthaerle
    Florian Schueder
    Ralf Jungmann
    Keith A. Lidke
    [J]. Scientific Reports, 9
  • [7] Choice of dimension using reversible jump Markov chain Monte Carlo in the multidimensional scaling
    Qing Xiangyun
    Wang Xingyu
    [J]. PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 4, 2007, : 597 - +
  • [8] Bayesian phylogenetic model selection using reversible jump Markov chain Monte Carlo
    Huelsenbeck, JP
    Larget, B
    Alfaro, ME
    [J]. MOLECULAR BIOLOGY AND EVOLUTION, 2004, 21 (06) : 1123 - 1133
  • [9] Bayesian Multiple Emitter Fitting using Reversible Jump Markov Chain Monte Carlo
    Fazel, Mohamadreza
    Wester, Michael J.
    Mazloom-Farsibaf, Hanieh
    Meddens, Marjolein B. M.
    Eklund, Alexandra S.
    Schlichthaerle, Thomas
    Schueder, Florian
    Jungmann, Ralf
    Lidke, Keith A.
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [10] Introduction to Subsurface Inversion Using Reversible Jump Markov-chain Monte Carlo
    Jun, Hyunggu
    Cho, Yongchae
    [J]. GEOPHYSICS AND GEOPHYSICAL EXPLORATION, 2022, 25 (04): : 252 - 265