Tunneling Aharonov-Bohm interferometer on helical edge states

被引:6
|
作者
Niyazov, R. A. [1 ,2 ]
Aristov, D. N. [1 ,3 ,4 ]
Kachorovskii, V. Yu. [2 ,3 ,5 ]
机构
[1] INRC Kurchatov Inst, Petersburg Nucl Phys Inst, Gatchina 188300, Russia
[2] LD Landau Inst Theoret Phys, Chernogolovka 142432, Moscow Region, Russia
[3] Karlsruhe Inst Technol, Inst Nanotechnol, D-76021 Karlsruhe, Germany
[4] St Petersburg State Univ, 7-9 Univ Skaya Naberezhnaia, St Petersburg 199034, Russia
[5] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
基金
俄罗斯科学基金会;
关键词
HGTE QUANTUM-WELLS; TOPOLOGICAL INSULATOR; WEAK-LOCALIZATION; MESOSCOPIC RINGS; METAL RINGS; TRANSPORT; PHASE; OSCILLATIONS;
D O I
10.1103/PhysRevB.98.045418
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We discuss transport through an interferometer formed by helical edge states tunnel-coupled to metallic leads. We focus on the experimentally relevant case of relatively high temperature as compared to the level spacing and discuss a response of the setup to the external magnetic flux cb (measured in units of flux quantum) piercing the area encompassed by the edge states. We demonstrate that tunneling conductance of the interferometer is structureless in the ballistic case but shows sharp antiresonances, as a function of magnetic flux phi-with the period 1/2-in the presence of a magnetic impurity. We interpret the resonance behavior as a coherent enhancement of backward scattering off the magnetic impurity at integer and half-integer values of flux, which is accompanied by suppression of the effective scattering at other values of flux. Both enhancement and suppression are due to the interference of processes with multiple returns to the magnetic impurity after a number of clockwise and counterclockwise revolutions around the setup. This phenomenon is similar to the well-known weak-localization-induced enhancement of backscattering in disordered systems. The quantum correction to the tunneling conductance is shown to be proportional to the flux-dependent "ballistic Cooperon." The obtained results can be used for flux-tunable control of the magnetic disorder in Aharonov-Bohm interferometers built on helical edge states.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Aharonov-Bohm Interferometry Based on Helical Edge States (Mini-review)
    Niyazov, R. A.
    Aristov, D. N.
    Kachorovskii, V. Yu
    JETP LETTERS, 2021, 113 (11) : 689 - 700
  • [2] AHARONOV-BOHM AND AHARONOV-CASHER TUNNELING EFFECTS AND EDGE STATES IN DOUBLE-BARRIER STRUCTURES
    BOGACHEK, EN
    LANDMAN, U
    PHYSICAL REVIEW B, 1994, 50 (04) : 2678 - 2680
  • [3] Flux-free conductance modulation in a helical Aharonov-Bohm interferometer
    Taira, Hisao
    Shima, Hiroyuki
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (24)
  • [4] Interacting electrons in the Aharonov-Bohm interferometer
    Ihnatsenka, S.
    Zozoulenko, I. V.
    PHYSICAL REVIEW B, 2008, 77 (23)
  • [5] Atomtronic multiterminal Aharonov-Bohm interferometer
    Lau, Jonathan Wei Zhong
    Gan, Koon Siang
    Dumke, Rainer
    Amico, Luigi
    Kwek, Leong-Chuan
    Haug, Tobias
    PHYSICAL REVIEW A, 2023, 107 (05)
  • [6] Detecting coupling of Majorana bound states with an Aharonov-Bohm interferometer
    Ramos-Andrade, J. P.
    Orellana, P. A.
    Ulloa, S. E.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2018, 30 (04)
  • [7] Amplitude of Aharonov-Bohm oscillations in a small semiconductor ring interferometer in the tunneling regime
    D. V. Nomokonov
    A. A. Bykov
    Journal of Experimental and Theoretical Physics Letters, 2005, 82 : 89 - 92
  • [8] Scattering description of edge states in Aharonov-Bohm triangle chains
    Liu, Zhi-Hai
    Entin-Wohlman, O.
    Aharony, A.
    You, J. Q.
    Xu, H. Q.
    PHYSICAL REVIEW B, 2024, 109 (08)
  • [9] Amplitude of Aharonov-Bohm oscillations in a small semiconductor ring interferometer in the tunneling regime
    Nomokonov, DV
    Bykov, AA
    JETP LETTERS, 2005, 82 (02) : 89 - 92
  • [10] Phase measurement in the mesoscopic Aharonov-Bohm interferometer
    Aharony, A
    Entin-Wohlman, O
    Halperin, BI
    Imry, Y
    PHYSICAL REVIEW B, 2002, 66 (11) : 1153111 - 1153117