Coupled ocean-atmosphere variability in the tropical Indian ocean

被引:0
|
作者
Yamagata, T [1 ]
Behera, SK [1 ]
Luo, JJ [1 ]
Masson, S [1 ]
Jury, MR [1 ]
Rao, SA [1 ]
机构
[1] Frontier Res Syst Global Change, Yokohama, Kanagawa 2360001, Japan
关键词
D O I
暂无
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The Indian Ocean Dipole (IOD) is a natural ocean-atmosphere coupled mode that plays important roles in seasonal and interannual climate variations. The coupled mode locked to boreal summer and fall is distinguished as a dipole in the SST anomalies that are coupled to zonal winds. The equatorial winds reverse their direction from westerlies to casterlies during the peak phase of the positive IOD events when SST is cool in the east and warm in the west. In response to changes in the wind, the thermocline rises in the east and subsides in the west. Subsurface equatorial long Rossby waves play a major role in strengthening SST anomalies in the central and western parts. The SINTEX-F I coupled model results support the observational finding that these equatorial Rossby waves are coupled to the surface wind forcing associated with IOD rather than ENSO. The ENSO influence is only distinct in off-equatorial latitudes south of 10degreesS. Although IOD events dominate the ocean-atmosphere variability during its evolution, their less frequent occurrence compared to ENSO events leads the mode to the second seat in the interannual variability. Therefore, it is necessary to remove the most dominant uniform mode to capture the IOD statistically. The seasonally stratified correlation between the indices of IOD and ENSO peaks at 0.53 in September-November. This means that only one third of IOD events are associated with ENSO events. Since a large number of IOD events are not associated with ENSO events, the independent nature of IOD is examined using partial correlation and pure composite techniques. Through changes in atmospheric circulation and water vapor transport, a positive IOD event causes drought in Indonesia, above normal rainfall in Affica, India, Bangladesh and Vietnam, and dry as well as hot summer in Europe, Japan, Korea and East China. In the Southern Hemisphere, the positive IOD causes dry winter in Australia, and dry as well as warm conditions in Brazil. The identification of IOD events has raised a new possibility to make a real advance in the predictability of seasonal and interannual climate variations that originate in the tropics.
引用
下载
收藏
页码:189 / 211
页数:23
相关论文
共 50 条
  • [1] Coupled Ocean-Atmosphere Mode in the Tropical Indian Ocean during 2011
    Iskandar, Iskhaq
    Mardiansyah, Wijaya
    Setiabudidaya, Dedi
    MAKARA JOURNAL OF SCIENCE, 2014, 18 (04) : 106 - 110
  • [2] Seasonal Influences on Coupled Ocean-Atmosphere Variability in the Tropical Atlantic Ocean
    Bates, Susan C.
    JOURNAL OF CLIMATE, 2010, 23 (03) : 582 - 604
  • [3] Intrinsic ocean-atmosphere variability of the tropical Atlantic Ocean
    Huang, BH
    Schopf, PS
    Shukla, J
    JOURNAL OF CLIMATE, 2004, 17 (11) : 2058 - 2077
  • [4] Coupled ocean-atmosphere response to Indian Ocean warmth
    Li, SL
    Hoerling, MP
    Peng, SL
    GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (07)
  • [5] MECHANISMS OF VARIABILITY AND PREDICTABILITY OF THE TROPICAL COUPLED OCEAN-ATMOSPHERE SYSTEM
    GOSWAMI, BN
    SELVARAJAN, S
    KRISHNAMURTHY, V
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-EARTH AND PLANETARY SCIENCES, 1993, 102 (01): : 49 - 72
  • [6] Coupled Ocean-Atmosphere Interaction and Variability in the Tropical Atlantic Ocean with and without an Annual Cycle
    Bates, Susan C.
    JOURNAL OF CLIMATE, 2008, 21 (21) : 5501 - 5523
  • [7] A coupled ocean-atmosphere system of SST modulation for the Indian Ocean
    Loschnigg, J
    Webster, PJ
    JOURNAL OF CLIMATE, 2000, 13 (19) : 3342 - 3360
  • [8] Interannual variability in the tropical pacific as simulated in coupled ocean-atmosphere models
    Latif, M.
    Villwock, A.
    JOURNAL OF MARINE SYSTEMS, 1990, 1 (1-2) : 51 - 60
  • [9] Climate variability of the coupled tropical-extratropical ocean-atmosphere system
    Wang, CZ
    Weisberg, RH
    GEOPHYSICAL RESEARCH LETTERS, 1998, 25 (21) : 3979 - 3982
  • [10] BISPECTRA OF A TROPICAL COUPLED OCEAN-ATMOSPHERE SYSTEM
    BISWAS, M
    CHANDRASEKAR, A
    GOSWAMI, BN
    CURRENT SCIENCE, 1995, 68 (12): : 1236 - 1243