Virtual Reference Feedback Tuning of MIMO Data-Driven Model-Free Adaptive Control Algorithms

被引:6
|
作者
Roman, Raul-Cristian [1 ]
Radac, Mircea-Bogdan [1 ]
Precup, Radu-Emil [1 ]
Petriu, Emil M. [2 ]
机构
[1] Politehn Univ Timisoara, Timisoara, Romania
[2] Univ Ottawa, Ottawa, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Model-Free Adaptive Control; Optimization; Twin Rotor Aerodynamic System; Virtual Reference Feedback Tuning; SEARCH ALGORITHM; SYSTEMS; DESIGN;
D O I
10.1007/978-3-319-31165-4_25
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a new tuning approach by which all Model-Free Adaptive Control (MFAC) algorithm parameters are computed using a nonlinear Virtual Reference Feedback Tuning (VRFT) algorithm. This new mixed data-driven control approach, which results in a mixed data-driven tuning algorithm, is advantageous as it offers a systematic way to tune the parameters of MFAC algorithms by VRFT using only the input/output data of the process. The proposed approach is validated by a set of MIMO experiments conducted on a nonlinear twin rotor aerodynamic system laboratory of equipment position control system. The mixed VRFT-MFAC algorithm is compared with a classical MFAC algorithm whose initial parameter values are optimally tuned.
引用
收藏
页码:253 / 260
页数:8
相关论文
共 50 条
  • [1] Data-driven Model-Free Adaptive Control Tuned by Virtual Reference Feedback Tuning
    Roman, Raul-Cristian
    Radac, Mircea-Bogdan
    Precup, Radu-Emil
    Petriu, Emil M.
    ACTA POLYTECHNICA HUNGARICA, 2016, 13 (01) : 83 - 96
  • [2] Data-Driven Virtual Reference Feedback Tuning and Reinforcement Q-learning for Model-Free Position Control of an Aerodynamic System
    Radac, Mircea-Bogdan
    Precup, Radu-Emil
    Roman, Raul-Cristian
    2016 24TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2016, : 1126 - 1132
  • [3] Virtual Reference Feedback Tuning with data-driven reference model selection
    Breschi, Valentina
    Formentin, Simone
    LEARNING FOR DYNAMICS AND CONTROL, VOL 120, 2020, 120 : 37 - 45
  • [4] Data-Driven Model-Free Adaptive Attitude Control Approach for Launch Vehicle With Virtual Reference Feedback Parameters Dining Method
    Duan, Li
    Hou, Zhongsheng
    Yu, Xian
    Jin, Shangtai
    Lu, Kunfeng
    IEEE ACCESS, 2019, 7 : 54106 - 54116
  • [5] Data-driven set-point tuning of model-free adaptive control
    Lin, Na
    Chi, Ronghu
    Liu, Yang
    Hou, Zhongsheng
    Huang, Biao
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2023, 33 (13) : 7667 - 7686
  • [6] Data-driven MIMO model-free reference tracking control with nonlinear state-feedback and fractional order controllers
    Radac, Mircea-Bogdan
    Precup, Radu-Emil
    APPLIED SOFT COMPUTING, 2018, 73 : 992 - 1003
  • [7] Data-driven distributed control: Virtual reference feedback tuning in dynamic networks
    Steentjes, Tom R., V
    Lazar, Mircea
    Van den Hof, Paul M. J.
    2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2020, : 1804 - 1809
  • [8] Data-Driven Model-Free Model-Reference Nonlinear Virtual State-Feedback Control from Input-Output Data
    Radac, Mircea-Bogdan
    Precup, Radu-Emil
    Hedrea, Elena-Lorena
    Mituletu, Ion-Cornel
    2018 26TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2018, : 332 - 338
  • [9] Combined Model-Free Adaptive Control with Fuzzy Component by Virtual Reference Feedback Tuning for Tower Crane Systems
    Roman, Raul-Cristian
    Precup, Radu-Emil
    Bojan-Dragos, Claudia-Adina
    Szedlak-Stinean, Alexandra-Iulia
    7TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT (ITQM 2019): INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT BASED ON ARTIFICIAL INTELLIGENCE, 2019, 162 : 267 - 274
  • [10] Data-Driven Model-Free Adaptive Control for a Class of MIMO Nonlinear Discrete-Time Systems
    Hou, Zhongsheng
    Jin, Shangtai
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (12): : 2173 - 2188