Ground states for asymptotically linear fractional Schrodinger-Poisson systems

被引:4
|
作者
Chen, Peng [1 ]
Liu, Xiaochun [2 ]
机构
[1] Hubei Normal Univ, Sch Math & Stat, Huangshi 435002, Hubei, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional Schrodinger-Poisson system; Asymptotically linear; Variational methods; 35J50; 35R11;
D O I
10.1007/s11868-021-00390-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the following fractional Schrodinger-Poisson system (-Delta )su+u+K(x)phi (x)u=g(x,u), x is an element of R3,(-Delta )s phi =K(x)u2, x is an element of R3, where s is an element of(<mml:mfrac>12</mml:mfrac>,1) and g(x, u) is asymptotically linear at infinity. Under certain assumptions on K(x) and g(x, u), we prove the existence of ground state solutions by variational methods.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Positive ground states for asymptotically periodic Schrodinger-Poisson systems
    Zhang, Hui
    Xu, Junxiang
    Zhang, Fubao
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (04) : 427 - 439
  • [2] POSITIVE GROUND STATE SOLUTIONS OF ASYMPTOTICALLY LINEAR SCHRODINGER-POISSON SYSTEMS
    Ma, Chao
    Tang, Chun-Lei
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2015, 16 (04) : 731 - 744
  • [3] Existence of ground state solutions for asymptotically linear Schrodinger-Poisson systems
    Du, Miao
    Zhang, Fubao
    Tian, Lixin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (13) : 3535 - 3548
  • [4] Ground states for asymptotically periodic Schrodinger-Poisson systems with critical growth
    Zhang, Hui
    Xu, Junxiang
    Zhang, Fubao
    Du, Miao
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2014, 12 (10): : 1484 - 1499
  • [5] Ground states for a class of asymptotically periodic Schrodinger-Poisson systems with critical growth
    Wang, Da-Bin
    Xie, Hua-Fei
    Guan, Wen
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2017, (97) : 1 - 18
  • [6] Ground states for critical fractional Schrodinger-Poisson systems with vanishing potentials
    Dou, Xilin
    He, Xiaoming
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (16) : 9089 - 9110
  • [7] Existence of ground state solutions for an asymptotically 2-linear fractional Schrodinger-Poisson system
    Yang, Dandan
    Bai, Chuanzhi
    BOUNDARY VALUE PROBLEMS, 2020, 2020 (01)
  • [8] On the asymptotically cubic fractional Schrodinger-Poisson system
    Wang, Wenbo
    Yu, Yuanyang
    Li, Yongkun
    APPLICABLE ANALYSIS, 2021, 100 (04) : 695 - 713
  • [9] Ground states for nonlinear fractional Schrodinger-Poisson systems with general convolution nonlinearities
    Yang, Jie
    Liu, Lintao
    Chen, Haibo
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (16) : 17581 - 17606
  • [10] Asymptotically linear Schrodinger-Poisson systems with potentials vanishing at infinity
    Zhu, Hongbo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 380 (02) : 501 - 510