Blind source separation via generalized Eigenvalue decomposition

被引:0
|
作者
Parra, L [1 ]
Sajda, P
机构
[1] CUNY City Coll, Dept Biomed Engn, New York, NY 10031 USA
[2] Columbia Univ, Dept Biomed Engn, New York, NY 10027 USA
关键词
blind source separation; generalized eigenvalue decomposition; non-Gaussian; non-white; non-stationary;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this short note we highlight the fact that linear blind source separation can be formulated as a generalized eigenvalue decomposition under the assumptions of non-Gaussian, non-stationary, or non-white independent sources. The solution for the unmixing matrix is given by the generalized eigenvectors that simultaneously diagonalize the covariance matrix of the observations and an additional symmetric matrix whose form depends upon the particular assumptions. The method critically determines the mixture coefficients and is therefore not robust to estimation errors. However it provides a rather general and unified solution that summarizes the conditions for successful blind source separation. To demonstrate the method, which can be implemented in two lines of matlab code, we present results for artificial mixtures of speech and real mixtures of electroencephalography (EEG) data, showing that the same sources are recovered under the various assumptions.
引用
收藏
页码:1261 / 1269
页数:9
相关论文
共 50 条
  • [1] Blind source separation via symmetric eigenvalue decomposition
    Georgiev, P
    Cichocki, A
    ISSPA 2001: SIXTH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, VOLS 1 AND 2, PROCEEDINGS, 2001, : 17 - 20
  • [2] Convolutive blind signal separation via polynomial matrix generalised eigenvalue decomposition
    Redif, S.
    ELECTRONICS LETTERS, 2017, 53 (02) : 87 - 88
  • [3] Blind acoustic beamforming based on generalized eigenvalue decomposition
    Warsitz, Ernst
    Haeb-Umbach, Reinhold
    IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2007, 15 (05): : 1529 - 1539
  • [4] Blind source separation by sparse decomposition
    Zibulevsky, M
    Pearlmutter, BA
    WAVELET APPLICATIONS VII, 2000, 4056 : 165 - 174
  • [5] Tensor decomposition meets blind source separation
    Le, Thanh Trung
    Abed-Meraim, Karim
    Ravier, Philippe
    Buttelli, Olivier
    Holobar, Ales
    SIGNAL PROCESSING, 2024, 221
  • [6] Multistage decomposition algorithm for blind source separation
    Feng, DH
    Bao, Z
    Zhang, XD
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2002, 12 (05) : 378 - 382
  • [7] Multistage decomposition algorithm for blind source separation
    FENG Dazheng
    ProgressinNaturalScience, 2002, (05) : 60 - 64
  • [8] Multistage decomposition algorithm for blind source separation
    Feng, Dazheng
    Bao, Zheng
    Zhang, Xianda
    Progress in Natural Science, 2002, 12 (05)
  • [9] Blind source separation based on generalized variance
    Huang, Gaoming
    Yang, Luxi
    He, Zhenya
    ADVANCES IN NEURAL NETWORKS - ISNN 2006, PT 1, 2006, 3971 : 1153 - 1158
  • [10] Multichannel blind deconvolution of colored signals via eigenvalue decomposition
    Georgiev, P
    Cichocki, A
    2001 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING PROCEEDINGS, 2001, : 273 - 276