Jump probabilities in the non-Markovian quantum jump method

被引:5
|
作者
Harkonen, Kari [1 ]
机构
[1] Univ Turku, Turku Ctr Quantum Phys, Dept Phys & Astron, FI-20014 Turku, Finland
基金
芬兰科学院;
关键词
DYNAMICAL SEMIGROUPS; MASTER-EQUATIONS; SYSTEM DYNAMICS;
D O I
10.1088/1751-8113/43/6/065302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The dynamics of a non-Markovian open quantum system described by a general time-local master equation is studied. The propagation of the density operator is constructed in terms of two processes: (i) deterministic evolution and (ii) evolution of a probability density functional in the projective Hilbert space. The analysis provides a derivation for the jump probabilities used in the recently developed non-Markovian quantum jump (NMQJ) method (Piilo et al 2008 Phys. Rev. Lett. 100 180402).
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Stochastic jump processes for non-Markovian quantum dynamics
    Breuer, H. -P.
    Piilo, J.
    EPL, 2009, 85 (05)
  • [2] Non-Markovian quantum jump with generalized Lindblad master equation
    Huang, X. L.
    Sun, H. Y.
    Yi, X. X.
    PHYSICAL REVIEW E, 2008, 78 (04)
  • [3] A quantum jump description for the non-Markovian dynamics of the spin-boson model
    Laine, E-M
    PHYSICA SCRIPTA, 2010, T140
  • [4] NON-MARKOVIAN STOCHASTIC JUMP-PROCESSES IN NONLINEAR OPTICS
    KOFMAN, AG
    ZAIBEL, R
    LEVINE, AM
    PRIOR, Y
    PHYSICAL REVIEW LETTERS, 1988, 61 (03) : 251 - 254
  • [5] Kinetic equation approach to the description of quantum surface diffusion: Non-Markovian effects versus jump dynamics
    Ignatyuk, V. V.
    PHYSICAL REVIEW E, 2009, 80 (04):
  • [6] Jump-diffusion unravelling of a non-Markovian generalized Lindblad master equation
    Barchielli, A.
    Pellegrini, C.
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (11)
  • [7] Representation of non-Markovian optimal stopping problems by constrained BSDEs with a single jump
    Fuhrman, Marco
    Huyen Pham
    Zeni, Federica
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2016, 21
  • [8] Model Reduction of Markovian Jump Systems With Uncertain Probabilities
    Shen, Ying
    Wu, Zheng-Guang
    Shi, Peng
    Ahn, Choon Ki
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (01) : 382 - 388
  • [9] Markovian and Non-Markovian Quantum Measurements
    Jennifer R. Glick
    Christoph Adami
    Foundations of Physics, 2020, 50 : 1008 - 1055
  • [10] Markovian and Non-Markovian Quantum Measurements
    Glick, Jennifer R.
    Adami, Christoph
    FOUNDATIONS OF PHYSICS, 2020, 50 (09) : 1008 - 1055