Quantitative stability results for the Brunn-Minkowski inequality

被引:0
|
作者
Figalli, Alessio [1 ]
机构
[1] Univ Texas Austin, Math Dept, RLM 8-100,2515 Speedway Stop C1200, Austin, TX 78712 USA
关键词
Geometric and functional inequalities; quantitative stability; sumsets; Brunn-Minkowski; ISOPERIMETRIC INEQUALITY; SHARP SOBOLEV;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Brunn-Minkowski inequality gives a lower bound on the Lebesgue measure of a sumset in terms of the measures of the individual sets. This inequality plays a crucial role in the theory of convex bodies and has many interactions with isoperimetry and functional analysis. Stability of optimizers of this inequality in one dimension is a consequence of classical results in additive combinatorics. In this note we describe how optimal transportation and analytic tools can be used to obtain quantitative stability results in higher dimension.
引用
收藏
页码:237 / 256
页数:20
相关论文
共 50 条
  • [1] Quantitative stability for the Brunn-Minkowski inequality
    Figalli, Alessio
    Jerison, David
    ADVANCES IN MATHEMATICS, 2017, 314 : 1 - 47
  • [2] Sharp quantitative stability of the planar Brunn-Minkowski inequality
    van Hintum, Peter
    Spink, Hunter
    Tiba, Marius
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2024, 26 (02) : 695 - 730
  • [3] Dimensionality and the stability of the Brunn-Minkowski inequality
    Eldan, Ronen
    Klartag, Bo'az
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2014, 13 (04) : 975 - 1007
  • [4] Quantitative stability of the Brunn-Minkowski inequality for sets of equal volume
    Alessio Figalli
    David Jerison
    Chinese Annals of Mathematics, Series B, 2017, 38 : 393 - 412
  • [5] Quantitative Stability of the Brunn-Minkowski Inequality for Sets of Equal Volume
    Figalli, Alessio
    Jerison, David
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2017, 38 (02) : 393 - 412
  • [6] The Brunn-Minkowski inequality
    Gardner, RJ
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 39 (03) : 355 - 405
  • [7] THE φ-BRUNN-MINKOWSKI INEQUALITY
    Lv, S. -J.
    ACTA MATHEMATICA HUNGARICA, 2018, 156 (01) : 226 - 239
  • [8] Brunn-Minkowski Inequality
    Alonso-Gutierrez, David
    Bastero, Jesus
    APPROACHING THE KANNAN-LOVASZ-SIMONOVITS AND VARIANCE CONJECTURES, 2015, 2131 : 137 - 146
  • [9] A nonabelian Brunn-Minkowski inequality
    Jing, Yifan
    Tran, Chieu-Minh
    Zhang, Ruixiang
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2023, 33 (04) : 1048 - 1100
  • [10] Refinements of the Brunn-Minkowski Inequality
    Hernandez Cifre, Maria A.
    Yepes Nicolas, Jesus
    JOURNAL OF CONVEX ANALYSIS, 2014, 21 (03) : 727 - 743