Connectivity of large bipartite digraphs and graphs

被引:7
|
作者
Balbuena, MC
Carmona, A
Fabrega, J
Fiol, MA
机构
[1] UNIV POLITECN CATALUNYA,DEPT MATEMAT APLICADA 3,ES-08034 BARCELONA,SPAIN
[2] UNIV POLITECN CATALUNYA,DEPT MATEMAT APLICADA & TELEMAT,ES-08034 BARCELONA,SPAIN
关键词
D O I
10.1016/S0012-365X(97)00313-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies the relation between the connectivity and other parameters of a bipartite (di)graph G. Namely, its order n, minimum degree delta, maximum degree Delta, diameter D, and a new parameter l related to the number of short paths in G. (When G is a bipartite undirected - graph this parameter turns out to be l=(g-2)/2, where g stands for its girth.) Let n(Delta, l)=1 + Delta + Delta(2) + ... + Delta(l). As a main result, it is shown that if n > (delta - 1){n(Delta, l) + n(Delta, D-l-1)-2} + 2, then the connectivity of the bipartite digraph G is maximum. Similarly, if n > (delta-1){n(Delta, l) + n(Delta, D-l-2)}, then the arc-connectivity of G is also maximum. Some examples show that these results are best possible. Furthermore, we show that analogous results, formulated in terms of the girth, can be given for the undirected case.
引用
收藏
页码:3 / 17
页数:15
相关论文
共 50 条