Prioritizing US Dengue Fever interventions utilizing remote sensing and predictive modeling

被引:0
|
作者
Grant, F. [1 ]
机构
[1] Northrop Grumman Corp, Atlanta, GA USA
关键词
D O I
10.1016/j.ijid.2010.02.464
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
引用
收藏
页码:E379 / E379
页数:1
相关论文
共 31 条
  • [1] Modeling and predicting dengue fever cases in key regions of the Philippines using remote sensing data
    Maria Ruth B.Pineda-Cortel
    Benjie M.Clemente
    Pham Thi Thanh Nga
    [J]. Asian Pacific Journal of Tropical Medicine, 2019, 12 (02) : 60 - 66
  • [2] Modeling and predicting dengue fever cases in key regions of the Philippines using remote sensing data
    Pineda-cortel, Maria Ruth B.
    Clemente, Benjie M.
    Pham Thi Thanh Nga
    [J]. ASIAN PACIFIC JOURNAL OF TROPICAL MEDICINE, 2019, 12 (02) : 60 - 66
  • [3] The use of remote sensing for predictive modeling of schistosomiasis in China
    Seto, E
    Xu, B
    Liang, S
    Gong, P
    Wu, WP
    Davis, G
    Qiu, DC
    Gu, XG
    Spear, R
    [J]. PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2002, 68 (02): : 167 - 174
  • [4] Remote Sensing Based Modeling of Dengue Outbreak with Regression and Binning Classification
    Kerdprasop, Nittaya
    Kerdprasop, Kittisak
    [J]. 2016 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC), 2016, : 46 - 49
  • [5] Modeling dengue fever risk based on socioeconomic parameters, nationality and age groups: GIS and remote sensing based case study
    Khormi, Hassan M.
    Kumar, Lalit
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2011, 409 (22) : 4713 - 4719
  • [6] Monitoring cyanobacterial blooms: a strategy combining predictive modeling and remote sensing approaches
    Signe Haakonsson
    Fernanda Maciel
    Marco A. Rodríguez
    Lucía Ponce de León
    Lorena Rodríguez-Gallego
    Rafael Arocena
    Francisco Pedocchi
    Sylvia Bonilla
    [J]. Environmental Earth Sciences, 2024, 83
  • [7] Monitoring cyanobacterial blooms: a strategy combining predictive modeling and remote sensing approaches
    Haakonsson, Signe
    Maciel, Fernanda
    Rodriguez, Marco A.
    Ponce de Leon, Lucia
    Rodriguez-Gallego, Lorena
    Arocena, Rafael
    Pedocchi, Francisco
    Bonilla, Sylvia
    [J]. ENVIRONMENTAL EARTH SCIENCES, 2024, 83 (07)
  • [8] Predictive Modeling and Concentration of the Risk of Suicide: Implications for Preventive Interventions in the US Department of Veterans Affairs
    McCarthy, John F.
    Bossarte, Robert M.
    Katz, Ira R.
    Thompson, Caitlin
    Kemp, Janet
    Hannemann, Claire M.
    Nielson, Christopher
    Schoenbaum, Michael
    [J]. AMERICAN JOURNAL OF PUBLIC HEALTH, 2015, 105 (09) : 1935 - 1942
  • [9] Challenges and implications of predicting the spatiotemporal distribution of dengue fever outbreak in Chinese Taiwan using remote sensing data and deep learning
    Anno, Sumiko
    Tsubasa, Hirakawa
    Sugita, Satoru
    Yasumoto, Shinya
    Lee, Ming-An
    Sasaki, Yoshinobu
    Oyoshi, Kei
    [J]. GEO-SPATIAL INFORMATION SCIENCE, 2024, 27 (04) : 1155 - 1161
  • [10] Utilizing MODIS remote sensing and integrated data for forest fire spread modeling in the southwest region of canada
    Dastour, Hatef
    Hassan, Quazi K.
    [J]. ENVIRONMENTAL RESEARCH COMMUNICATIONS, 2024, 6 (02):