Artificial intelligence in oncology: Path to implementation

被引:54
|
作者
Chua, Isaac S. [1 ,2 ,3 ]
Gaziel-Yablowitz, Michal [1 ,3 ]
Korach, Zfania T. [1 ,3 ]
Kehl, Kenneth L. [3 ,4 ,5 ]
Levitan, Nathan A. [6 ]
Arriaga, Yull E. [6 ]
Jackson, Gretchen P. [6 ,7 ]
Bates, David W. [1 ,3 ]
Hassett, Michael [3 ,4 ,5 ]
机构
[1] Brigham & Womens Hosp, Dept Med, Div Gen Internal Med & Primary Care, 75 Francis St, Boston, MA 02115 USA
[2] Dana Farber Canc Inst, Dept Psychosocial Oncol & Palliat Care, Boston, MA 02115 USA
[3] Harvard Med Sch, Boston, MA 02115 USA
[4] Dana Farber Canc Inst, Div Populat Sci, Boston, MA 02115 USA
[5] Dana Farber Canc Inst, Dept Med Oncol, Boston, MA 02115 USA
[6] IBM Watson Hlth, Cambridge, MA USA
[7] Vanderbilt Univ, Med Ctr, Dept Pediat Surg, Nashville, TN USA
来源
CANCER MEDICINE | 2021年 / 10卷 / 12期
关键词
artificial intelligence; deep learning; machine learning; oncology; TREATMENT RECOMMENDATIONS; CLINICAL-TRIALS; BREAST-CANCER; CARE; AI; INTEGRATION; CHALLENGES; BEHAVIOR; PATIENT; IMPACT;
D O I
10.1002/cam4.3935
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
In recent years, the field of artificial intelligence (AI) in oncology has grown exponentially. AI solutions have been developed to tackle a variety of cancer-related challenges. Medical institutions, hospital systems, and technology companies are developing AI tools aimed at supporting clinical decision making, increasing access to cancer care, and improving clinical efficiency while delivering safe, high-value oncology care. AI in oncology has demonstrated accurate technical performance in image analysis, predictive analytics, and precision oncology delivery. Yet, adoption of AI tools is not widespread, and the impact of AI on patient outcomes remains uncertain. Major barriers for AI implementation in oncology include biased and heterogeneous data, data management and collection burdens, a lack of standardized research reporting, insufficient clinical validation, workflow and user-design challenges, outdated regulatory and legal frameworks, and dynamic knowledge and data. Concrete actions that major stakeholders can take to overcome barriers to AI implementation in oncology include training and educating the oncology workforce in AI; standardizing data, model validation methods, and legal and safety regulations; funding and conducting future research; and developing, studying, and deploying AI tools through multidisciplinary collaboration.
引用
收藏
页码:4138 / 4149
页数:12
相关论文
共 50 条
  • [1] The Path to Implementation of Artificial Intelligence in Screening Mammography Is Not All That Clear
    Mello-Thoms, Claudia
    [J]. JAMA NETWORK OPEN, 2020, 3 (03)
  • [2] Artificial Intelligence in Oncology
    Liebovitz, David
    Perkins, Randa M.
    Riaz, Irbaz
    Stetson, Peter D.
    [J]. JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2024, 22
  • [3] Artificial Intelligence and Oncology
    Geynisman, Daniel M.
    [J]. JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2024, 22 (05): : 277 - 277
  • [4] Artificial intelligence in oncology
    Shimizu, Hideyuki
    Nakayama, Keiichi I.
    [J]. CANCER SCIENCE, 2020, 111 (05) : 1452 - 1460
  • [5] Medical physicists will drive the development and implementation of artificial intelligence in Radiation Oncology
    Van Elmpt, W.
    Jornet, N.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2020, 152 : S8 - S8
  • [6] A Path to Artificial Intelligence
    Dronic, Ion
    [J]. INTELLIGENT SYSTEMS AND APPLICATIONS, INTELLISYS, VOL 2, 2019, 869 : 658 - 668
  • [7] Artificial Intelligence in Radiation Oncology
    Deig, Christopher R.
    Kanwar, Aasheesh
    Thompson, Reid F.
    [J]. HEMATOLOGY-ONCOLOGY CLINICS OF NORTH AMERICA, 2019, 33 (06) : 1095 - +
  • [8] Artificial intelligence in oncology imaging
    Sorensen, A. Gregory
    [J]. ANNALS OF ONCOLOGY, 2021, 32 : S241 - S241
  • [9] Artificial intelligence in radiation oncology
    Elizabeth Huynh
    Ahmed Hosny
    Christian Guthier
    Danielle S. Bitterman
    Steven F. Petit
    Daphne A. Haas-Kogan
    Benjamin Kann
    Hugo J. W. L. Aerts
    Raymond H. Mak
    [J]. Nature Reviews Clinical Oncology, 2020, 17 : 771 - 781
  • [10] Artificial intelligence in radiation oncology
    Huynh, Elizabeth
    Hosny, Ahmed
    Guthier, Christian
    Bitterman, Danielle S.
    Petit, Steven E.
    Haas-Kogan, Daphne A.
    Kann, Benjamin
    Aert, Hugo J. W. L.
    Mak, Raymond H.
    [J]. NATURE REVIEWS CLINICAL ONCOLOGY, 2020, 17 (12) : 771 - 781