Using a risk model for probability of cancer in pulmonary nodules

被引:6
|
作者
Liu, Si-Qi [1 ,2 ]
Ma, Xiao-Bin [1 ]
Song, Wan-Mei [1 ,2 ]
Li, Yi-Fan [1 ]
Li, Ning [3 ]
Wang, Li-Na [4 ]
Liu, Jin-Yue [5 ]
Tao, Ning-Ning [6 ,7 ]
Li, Shi-Jin [1 ,2 ]
Xu, Ting-Ting [1 ]
Zhang, Qian-Yun [1 ,2 ]
An, Qi-Qi [1 ,2 ]
Liang, Bin [1 ]
Li, Huai-Chen [1 ,8 ]
机构
[1] Shandong Univ, Shandong Prov Hosp, Dept Resp & Crit Care Med, Cheeloo Coll Med, Jinan 250021, Shandong, Peoples R China
[2] Shandong Univ, Cheeloo Coll Med, Jinan, Peoples R China
[3] Shandong Univ, Shandong Med Imaging Res Inst, Cheeloo Coll Med, Jinan, Peoples R China
[4] Shandong Univ, Shandong Prov Hosp, Dept Med Imaging, Cheeloo Coll Med, Jinan, Peoples R China
[5] Shandong Prov Third Hosp, Dept Intens Care Unit, Jinan, Peoples R China
[6] Beijing Hosp, Dept Resp & Crit Care Med, Beijing, Peoples R China
[7] Chinese Acad Med Sci & Peking Union Med Coll, Grad Sch, Peking Union Med Coll, Beijing, Peoples R China
[8] Shandong Univ Tradit Chinese Med, Coll Tradit Chinese Med, Jinan, Peoples R China
关键词
decision tree; logistics regression; lung cancer; pulmonary nodules; GROUND-GLASS NODULES; LUNG-CANCER; SOCIETY GUIDELINES; FLEISCHNER-SOCIETY; CT; GLOSSARY; TERMS;
D O I
10.1111/1759-7714.13991
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background Considering the high morbidity and mortality of lung cancer and the high incidence of pulmonary nodules, clearly distinguishing benign from malignant lung nodules at an early stage is of great significance. However, determining the kind of lung nodule which is more prone to lung cancer remains a problem worldwide. Methods A total of 480 patients with pulmonary nodule data were collected from Shandong, China. We assessed the clinical characteristics and computed tomography (CT) imaging features among pulmonary nodules in patients who had undergone video-assisted thoracoscopic surgery (VATS) lobectomy from 2013 to 2018. Preliminary selection of features was based on a statistical analysis using SPSS. We used WEKA to assess the machine learning models using its multiple algorithms and selected the best decision tree model using its optimization algorithm. Results The combination of decision tree and logistics regression optimized the decision tree without affecting its AUC. The decision tree structure showed that lobulation was the most important feature, followed by spiculation, vessel convergence sign, nodule type, satellite nodule, nodule size and age of patient. Conclusions Our study shows that decision tree analyses can be applied to screen individuals for early lung cancer with CT. Our decision tree provides a new way to help clinicians establish a logical diagnosis by a stepwise progression method, but still needs to be validated for prospective trials in a larger patient population.
引用
收藏
页码:1881 / 1889
页数:9
相关论文
共 50 条
  • [1] External validation and recalibration of the Brock model to predict probability of cancer in pulmonary nodules using NLST data
    Winter, Audrey
    Aberle, Denise R.
    Hsu, William
    THORAX, 2019, 74 (06) : 551 - 563
  • [2] Communication About the Probability of Cancer in Indeterminate Pulmonary Nodules
    Maiga, Amelia W.
    Deppen, Stephen A.
    Massion, Pierre P.
    Callaway-Lane, Carol
    Pinkerman, Rhonda
    Dittus, Robert S.
    Lambright, Eric S.
    Nesbitt, Jonathan C.
    Grogan, Eric L.
    JAMA SURGERY, 2018, 153 (04) : 353 - 357
  • [3] A clinical model to estimate the pretest probability of lung cancer in patients with solitary pulmonary nodules
    Gould, Michael K.
    Ananth, Lakshmi
    Barnett, Paul G.
    CHEST, 2007, 131 (02) : 383 - 388
  • [4] Development of a Risk Prediction Model to Estimate the Probability of Malignancy in Pulmonary Nodules Being Considered for Biopsy
    Reid, Michal
    Choi, Humberto K.
    Han, Xiaozhen
    Wang, Xiaofeng
    Mukhopadhyay, Sanjay
    Kou, Lei
    Ahmad, Usman
    Wang, Xiaoqiong
    Mazzone, Peter J.
    CHEST, 2019, 156 (02) : 367 - 375
  • [5] Probability of Cancer in Pulmonary Nodules Detected on First Screening CT
    McWilliams, Annette
    Tammemagi, Martin C.
    Mayo, John R.
    Roberts, Heidi
    Liu, Geoffrey
    Soghrati, Kam
    Yasufuku, Kazuhiro
    Martel, Simon
    Laberge, Francis
    Gingras, Michel
    Atkar-Khattra, Sukhinder
    Berg, Christine D.
    Evans, Ken
    Finley, Richard
    Yee, John
    English., John
    Nasute, Paola
    Goffin, John
    Puksa, Serge
    Stewart, Lori
    Tsai, Scott
    Johnston, Michael R.
    Manos, Daria
    Nicholas, Garth
    Goss, Glenwood D.
    Seely, Jean M.
    Amjadi, Kayvan
    Tremblay, Alain
    Burrowes, Paul
    MacEachern, Paul
    Bhatia, Rick
    Tsao, Ming-Sound
    Lam, Stephen
    NEW ENGLAND JOURNAL OF MEDICINE, 2013, 369 (10): : 910 - 919
  • [6] Risk of Lung Cancer in Peripheral Pulmonary Nodules
    Hammer, Mark M.
    Hunsaker, Andetta R.
    ACADEMIC RADIOLOGY, 2024, 31 (12) : 5261 - 5268
  • [7] Reducing uncertainty in cancer risk estimation for patients with indeterminate pulmonary nodules using an integrated deep learning model
    Gao, Riqiang
    Li, Thomas
    Tang, Yucheng
    Xu, Kaiwen
    Khan, Mirza
    Kammer, Michael
    Antic, Sanja L.
    Deppen, Stephen
    Huo, Yuankai
    Lasko, Thomas A.
    Sandler, Kim L.
    Maldonado, Fabien
    Landman, Bennett A.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 150
  • [8] LUNG CANCER PROBABILITY IN SUBJECTS WITH CT-DETECTED PULMONARY NODULES
    Horeweg, Nanda
    Van Rosmalen, Joost
    Heuvelmans, Marjolein
    Van der Aalst, Carlijn M.
    Vliegenthart, Rozemarijn
    Scholten, Ernst T.
    Ten Haaf, Kevin
    Nackaerts, Kristiaan
    Lammers, Jan-Willem
    Groen, Harry J. M.
    Weenink, Carla
    Thunnissen, Erik
    Van Ooijen, Peter
    De Jongh, Pim A.
    De Bock, Truuske
    Mali, Willem
    De Koning, Harry J.
    Oudkerk, Matthijs
    JOURNAL OF THORACIC ONCOLOGY, 2013, 8 : S2 - S2
  • [9] Coexisting pulmonary nodules in operable lung cancer: Prevalence and probability of malignancy
    Ruppert, A. M.
    Lerolle, U.
    Carette, M. F.
    Lavole, A.
    Khalil, A.
    Bazelly, B.
    Antoine, M.
    Cadranel, J.
    Milleron, B.
    LUNG CANCER, 2011, 74 (02) : 233 - 238
  • [10] Clinical Prediction Model To Estimate The Probability Of Malignancy In Solitary Pulmonary Nodules
    Vaszar, L. T.
    Penupolu, S.
    Wesselius, L.
    Gotway, M. B.
    Roarke, M. C.
    Ronan, B. A.
    Blair, J. E.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2014, 189