How to single out solutions bounded at a singular point for some differential-algebraic systems

被引:1
|
作者
Abramov, AA [1 ]
Ul'yanova, VI
Yukhno, LF
机构
[1] Russian Acad Sci, Computat Ctr, Moscow, Russia
[2] Russian Acad Sci, Inst Math Modelling, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
Differential Equation; Partial Differential Equation; Ordinary Differential Equation; Functional Equation; Singular Point;
D O I
10.1023/B:DIEQ.0000047026.01739.36
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:954 / 958
页数:5
相关论文
共 50 条
  • [1] How to Single out Solutions Bounded at a Singular Point for Some Differential-Algebraic Systems
    A. A. Abramov
    V. I. Ul'yanova
    L. F. Yukhno
    Differential Equations, 2004, 40 : 954 - 958
  • [2] Analytical Solutions for Systems of Singular Partial Differential-Algebraic Equations
    Filobello-Nino, U.
    Vazquez-Leal, H.
    Benhammouda, B.
    Perez-Sesma, A.
    Jimenez-Fernandez, V. M.
    Cervantes-Perez, J.
    Sarmiento-Reyes, A.
    Huerta-Chua, J.
    Morales-Mendoza, L. J.
    Gonzalez-Lee, M.
    Diaz-Sanchez, A.
    Pereyra-Diaz, D.
    Lopez-Martinez, R.
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2015, 2015
  • [3] DIFFERENTIAL-ALGEBRAIC SYSTEMS, THEIR APPLICATIONS AND SOLUTIONS
    BYRNE, GD
    PONZI, PR
    COMPUTERS & CHEMICAL ENGINEERING, 1988, 12 (05) : 377 - 382
  • [4] A singular perturbation approach for modeling differential-algebraic systems
    Gordon, BW
    Liu, S
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 1998, 120 (04): : 541 - 545
  • [5] Singular perturbation approach for modeling differential-algebraic systems
    Massachusetts Inst of Technology, Cambridge, United States
    J Dyn Syst Meas Control Trans ASME, 4 (541-545):
  • [6] Nonstandard singular perturbation systems and higher index differential-algebraic systems
    Etchechoury, M
    Muravchik, C
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 134 (2-3) : 323 - 344
  • [7] Analytical solutions for systems of partial differential-algebraic equations
    Benhammouda, Brahim
    Vazquez-Leal, Hector
    SPRINGERPLUS, 2014, 3 : 1 - 9
  • [8] Representation of solutions for fractional differential-algebraic systems with delays
    Zaczkiewicz, Z.
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2010, 58 (04) : 607 - 612
  • [9] On singular points of quasilinear differential and differential-algebraic equations
    Jukka Tuomela
    BIT Numerical Mathematics, 1997, 37 : 968 - 977
  • [10] On singular points of quasilinear differential and differential-algebraic equations
    Tuomela, J
    BIT, 1997, 37 (04): : 968 - 977