Finite element simulation of compressible particle-laden gas flows

被引:8
|
作者
Gurris, Marcel [1 ]
Kuzmin, Dmitri [1 ]
Turek, Stefan [1 ]
机构
[1] Dortmund Univ Technol, Inst Appl Math LS 3, D-44227 Dortmund, Germany
关键词
Particle-laden gas flows; Inviscid two-fluid model; Euler equations; Unstructured meshes; Implicit high-resolution schemes;
D O I
10.1016/j.cam.2009.07.041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A macroscopic two-fluid model of compressible particle-laden gas flows is considered. The governing equations are discretized by a high-resolution finite element method based on algebraic flux correction. A multidimensional limiter of TVD type is employed to constrain the local characteristic variables for the continuous gas phase and conservative fluxes for a suspension of solid particles. Special emphasis is laid on the efficient computation of steady state solutions at arbitrary Mach numbers. To avoid stability restrictions and convergence problems, the characteristic boundary conditions are imposed weakly and treated in a fully implicit manner. A two-way coupling via the interphase drag force is implemented using operator splitting. The Douglas-Rachford scheme is found to provide a robust treatment of the interphase exchange terms within the framework of a fractional-step solution strategy. Two-dimensional simulation results are presented for a moving shock wave and for a steady nozzle flow. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:3121 / 3129
页数:9
相关论文
共 50 条
  • [1] Implicit finite element schemes for stationary compressible particle-laden gas flows
    Gurris, Marcel
    Kuzmin, Dmitri
    Turek, Stefan
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (17) : 5056 - 5077
  • [2] Recent advances in the simulation of particle-laden flows
    Harting, J.
    Frijters, S.
    Ramaioli, M.
    Robinson, M.
    Wolf, D. E.
    Luding, S.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2014, 223 (11): : 2253 - 2267
  • [3] Simulation of particle-laden gas flows in an anti-abrasive elbow
    Kim, YJ
    Kim, HS
    [J]. COMPUTATIONAL METHODS IN MULTIPHASE FLOW II, 2004, 37 : 95 - 103
  • [4] SIMULATION OF PARTICLE-LADEN GAS STREAMS
    MICHAEL, K
    [J]. CHEMIE INGENIEUR TECHNIK, 1992, 64 (01) : 90 - 91
  • [5] Recent advances in the simulation of particle-laden flows
    J. Harting
    S. Frijters
    M. Ramaioli
    M. Robinson
    D.E. Wolf
    S. Luding
    [J]. The European Physical Journal Special Topics, 2014, 223 : 2253 - 2267
  • [6] A volume-filtered description of compressible particle-laden flows
    Shallcross, Gregory S.
    Fox, Rodney O.
    Capecelatro, Jesse
    [J]. INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2020, 122
  • [7] Uncertainty quantification in numerical simulation of particle-laden flows
    Gabriel M. Guerra
    Souleymane Zio
    Jose J. Camata
    Jonas Dias
    Renato N. Elias
    Marta Mattoso
    Paulo L. B. Paraizo
    Alvaro L. G. A. Coutinho
    Fernando A. Rochinha
    [J]. Computational Geosciences, 2016, 20 : 265 - 281
  • [8] Uncertainty quantification in numerical simulation of particle-laden flows
    Guerra, Gabriel M.
    Zio, Souleymane
    Camata, Jose J.
    Dias, Jonas
    Elias, Renato N.
    Mattoso, Marta
    Paraizo, Paulo L. B.
    Coutinho, Alvaro L. G. A.
    Rochinha, Fernando A.
    [J]. COMPUTATIONAL GEOSCIENCES, 2016, 20 (01) : 265 - 281
  • [9] Target Lagrangian kinematic simulation for particle-laden flows
    Murray, S.
    Lightstone, M. F.
    Tullis, S.
    [J]. PHYSICAL REVIEW E, 2016, 94 (03)
  • [10] Finite-volume Eulerian solver for simulation of particle-laden flows for icing applications
    Sotomayor-Zakharov, Denis
    Bansmer, Stephan
    [J]. COMPUTERS & FLUIDS, 2021, 228