ON ONE-DIMENSIONAL DIFFUSION PROCESSES WITH MOVING MEMBRANES

被引:0
|
作者
Kopytko, Bohdan [1 ]
Shevchuk, Roman [2 ]
机构
[1] Czestochowa Tech Univ, Dept Math, Czestochowa, Poland
[2] Lviv Polytech Natl Univ, Dept Math, Lvov, Ukraine
关键词
diffusion processes with membranes; two-parapeter Feller semigroup; nonlocal boundary condition; method of potential theory; REFLECTION; BOUNDARY;
D O I
10.17512/jamcm.2022.3.04
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the method of the classical potential theory, we construct the two-parameter Feller semigroup associated, on the given interval of the real line, with the Markov process such that it is a result of pasting together, at some point of the interval, two ordinary diffusion processes given in sub-domains of this interval. It is assumed that the position on the line of boundary points of these sub-domains depends on the time variable. In addition, some variants of the general nonlocal boundary condition of Feller-Wentzell's type are given in these points. The resulting process can serve as a one-dimensional mathematical model of the physical phenomenon of diffusion in media with moving membranes.
引用
下载
收藏
页码:45 / 57
页数:13
相关论文
共 50 条
  • [1] EIGENTIME IDENTITY FOR ONE-DIMENSIONAL DIFFUSION PROCESSES
    Cheng, Li-Juan
    Mao, Yong-Hua
    JOURNAL OF APPLIED PROBABILITY, 2015, 52 (01) : 224 - 237
  • [2] ON PROLONGATION OF LIFETIME OF ONE-DIMENSIONAL DIFFUSION PROCESSES
    CHERKASO.ID
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1967, 15 (05): : 339 - &
  • [3] Pasting of two one-dimensional diffusion processes
    Shevchuk, Roman
    ANNALES MATHEMATICAE ET INFORMATICAE, 2012, 39 : 225 - 239
  • [4] TIME INVERSION OF ONE-DIMENSIONAL DIFFUSION PROCESSES
    WATANABE, S
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1975, 31 (02): : 115 - 124
  • [5] On a condition that one-dimensional diffusion processes are martingales
    Kotani, Shinichi
    IN MEMORIAM PAUL-ANDRE MEYER: SEMINAIRE DE PROBABILITIES XXXIX, 2006, 1874 : 149 - 156
  • [6] FIRST EIGENVALUE OF ONE-DIMENSIONAL DIFFUSION PROCESSES
    Wang, Jian
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2009, 14 : 232 - 244
  • [7] CONTROLLED ONE-DIMENSIONAL DIFFUSION PROCESSES WITH UNKNOWN PARAMETER
    DUFKOVA, V
    ADVANCES IN APPLIED PROBABILITY, 1977, 9 (01) : 105 - 124
  • [8] First passage probabilities of one-dimensional diffusion processes
    Huijie Ji
    Jinghai Shao
    Frontiers of Mathematics in China, 2015, 10 : 901 - 916
  • [9] Unbiased Sensitivity Estimation of One-Dimensional Diffusion Processes
    Kang, Wanmo
    Lee, Jong Mun
    MATHEMATICS OF OPERATIONS RESEARCH, 2019, 44 (01) : 334 - 353
  • [10] Small random perturbations of one-dimensional diffusion processes
    Xi, FB
    ACTA MATHEMATICA SINICA-NEW SERIES, 1998, 14 (01): : 35 - 40