Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating

被引:286
|
作者
Chuvieco, E
Cocero, D
Riaño, D
Martin, P
Martínez-Vega, J
de la Riva, J
Pérez, F
机构
[1] Univ Alcala de Henares, Dept Geog, Alcala De Henares 28801, Spain
[2] Univ Calif Davis, CSTARS, Dept Land Air & Water Resources, Davis, CA 95616 USA
[3] CSIC, Inst Econ & Geog, Madrid 28006, Spain
[4] Univ Zaragoza, Dept Geog, Zaragoza 50009, Spain
关键词
multitemporal analysis; fuel moisture content; surface temperature; forest fires; AVHRR;
D O I
10.1016/j.rse.2004.01.019
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper presents an empirical method for deriving fuel moisture content (FMC) for Mediterranean grasslands and shrub species based on multitemporal analysis of NOAA-AVHRR data. The results are based on 6 years of field measurements of FMC. The empirical function was derived from a 4-year series and includes multitemporal composites of AVHRR's normalized difference vegetation index (NDVI) and surface temperature (ST) values, as well as a function of the day of the year. It was tested using data from 2 other years on the same site as well as other sites with similar species but very distant from each other and with different elevation ranges. The results show that the model provides a consistent estimation of FMC, with high accuracies for all study sites and species considered, with r(2) values over 0.8 for both grasslands and shrub species. This performance enables the model to be used to derive spatial estimator of FMC, which is a key factor in operational fire danger management in Mediterranean conditions. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:322 / 331
页数:10
相关论文
共 50 条
  • [1] Developing a live fuel moisture model for moorland fire danger rating
    Davies, G. M.
    Legg, C. J.
    MODELLING, MONITORING AND MANAGEMENT OF FOREST FIRES, 2008, 119 : 225 - 236
  • [2] A simple method for assessing fuel moisture content and fire danger rating
    Sharples, J. J.
    McRae, R. H. D.
    Weber, R. O.
    Gill, A. M.
    18TH WORLD IMACS CONGRESS AND MODSIM09 INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION: INTERFACING MODELLING AND SIMULATION WITH MATHEMATICAL AND COMPUTATIONAL SCIENCES, 2009, : 275 - 281
  • [4] Estimation of Live Fuel Moisture Content From MODIS Images for Fire Danger Assessment in Southern Gran Chaco
    Pablo Arganaraz, Juan
    Alejandro Landi, Marcos
    Josefina Bravo, Sandra
    Ignacio Gavier-Pizarro, Gregorio
    Marcelo Scavuzzo, Carlos
    Marisa Bellis, Laura
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (12) : 5339 - 5349
  • [5] FOREST FUEL MOISTURE VARIATION IN TERMS OF FOREST FIRE DANGER INDEX
    Pereira, Jose Fernando
    Batista, Antonio Carlos
    Scares, Ronaldo Viana
    CERNE, 2012, 18 (03) : 371 - 376
  • [6] Estimation of live fuel moisture content from MODIS images for fire risk assessment
    Yebra, Marta
    Chuvieco, Emilio
    Riano, David
    AGRICULTURAL AND FOREST METEOROLOGY, 2008, 148 (04) : 523 - 536
  • [7] Modernizing the US National Fire Danger Rating System (version 4): Simplified fuel models and improved live and dead fuel moisture calculations
    Jolly, W. Matt
    Freeborn, Patrick H.
    Bradshaw, Larry S.
    Wallace, Jon
    Brittain, Stuart
    ENVIRONMENTAL MODELLING & SOFTWARE, 2024, 181
  • [8] On the effect of live fuel moisture content on fire rate of spread
    Rossa, Carlos G.
    Fernandes, Paulo M.
    FOREST SYSTEMS, 2017, 26 (03)
  • [9] A global review of remote sensing of live fuel moisture content for fire danger assessment: Moving towards operational products
    Yebra, Marta
    Dennison, Philip E.
    Chuvieco, Emilio
    Riano, David
    Zylstra, Philip
    Hunt, E. Raymond, Jr.
    Danson, F. Mark
    Qi, Yi
    Jurdao, Sara
    REMOTE SENSING OF ENVIRONMENT, 2013, 136 : 455 - 468
  • [10] Combining AVHRR and meteorological data for estimating live fuel moisture content
    Garcia, Mariano
    Chuvieco, Emilio
    Nieto, Hector
    Aguado, Inmaculado
    REMOTE SENSING OF ENVIRONMENT, 2008, 112 (09) : 3618 - 3627