Normal forms in Cauchy-Riemann geometry

被引:7
|
作者
Kolar, Martin [1 ]
Kossovskiy, Ilya [1 ,2 ]
Zaitsev, Dmitri [3 ]
机构
[1] Masaryk Univ, Dept Math & Stat, Brno, Czech Republic
[2] Univ Fed Santa Catarina, Dept Math, Florianopolis, SC, Brazil
[3] Trinity Coll Dublin, Sch Math, Dublin, Ireland
基金
爱尔兰科学基金会;
关键词
REAL HYPERSURFACES; FINITE-TYPE; POLYNOMIAL-MODELS; AUTOMORPHISMS; SUBMANIFOLDS; CONNECTION; MANIFOLDS; SPACE; C-2;
D O I
10.1090/conm/681/13685
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
One of effective ways to solve the equivalence problem and describe moduli spaces for real submanifolds in complex space is the normal form approach. In this survey, we outline some normal form constructions in CR-geometry and formulate a number of open problems.
引用
收藏
页码:153 / 177
页数:25
相关论文
共 50 条
  • [1] THE CAUCHY-RIEMANN EQUATIONS AND DIFFERENTIAL GEOMETRY
    WELLS, RO
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1983, 39 : 423 - 435
  • [3] THE CONVERGENCE OF CAUCHY-RIEMANN SUMS TO CAUCHY-RIEMANN INTEGRALS
    SZASZ, O
    TODD, J
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1948, 54 (11) : 1071 - 1071
  • [4] The geometry of Cauchy-Riemann manifolds in dimension three
    Cheng, JH
    PROCEEDINGS OF THE SECOND ASIAN MATHEMATICAL CONFERENCE 1995, 1998, : 201 - 208
  • [5] Artins approximation theorems and Cauchy-Riemann geometry
    Mir, Nordine
    METHODS AND APPLICATIONS OF ANALYSIS, 2014, 21 (04) : 481 - 501
  • [6] CONVERGENCE OF CAUCHY-RIEMANN SUMS TO CAUCHY-RIEMANN INTEGRALS
    SZASZ, O
    TODD, J
    JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1951, 47 (03): : 191 - 196
  • [7] Cauchy-Riemann geometry and contact topology in three dimensions
    Cheng, Jih-Hsin
    2000, National Science Council, Taipei, Taiwan (24):
  • [8] Cauchy-Riemann equations and J-symplectic forms
    Ferreiro Perez, R.
    Munoz Masque, J.
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2008, 26 (02) : 201 - 207
  • [9] CAUCHY-RIEMANN OPERATOR
    EBERLEIN, WF
    AMERICAN JOURNAL OF PHYSICS, 1967, 35 (01) : 53 - &
  • [10] Cauchy-Riemann beams
    Moya-Cessa, H. M.
    Ramos-Prieto, I.
    Sanchez-de-la-Llave, D.
    Ruiz, U.
    Arrizon, V.
    Soto-Eguibar, F.
    PHYSICAL REVIEW A, 2024, 109 (04)