Fluoride detection with a redox-active naphthalene diimide metal-organic framework

被引:16
|
作者
Wentz, Hanna C. [1 ]
Campbell, Michael G. [1 ]
机构
[1] Barnard Coll, Dept Chem, 3009 Broadway, New York, NY 10027 USA
关键词
Metal-organic frameworks; Mesoporous Materials; Sensors; Fluoride; Naphthalene Diimides; ELECTRONIC DEVICES; ANION; WATER; ROADMAP; IONS;
D O I
10.1016/j.poly.2018.08.005
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Fluoride is commonly added to drinking water supplies for dental health; however, exposure to elevated fluoride levels can cause significant health problems. Therefore, it is important to develop simple and robust methods for monitoring fluoride in solution. Metal-organic frameworks (MOFs) have been targeted as ideal materials for next-generation sensing technologies, due to their combination of high surface area and chemical tunability. Here we report that a mesoporous MOF with redox-active naphthalene diimide-based ligands exhibits a selective and reversible color-change response to fluoride anion. The incorporation of fluoride sensing organic molecules into a MOF allows for the development of solid-state sensor devices that offer advantages relative to solution-phase methods. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:309 / 313
页数:5
相关论文
共 50 条
  • [1] Fluoride detection with redox-active metal-organic frameworks
    Wentz, Hanna
    Campbell, Michael
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [2] Highly Stable Metal-Organic Framework with Redox-Active Naphthalene Diimide Core as Cathode Material for Aqueous Zinc-Ion Batteries
    Liu, Yongyao
    Li, Zhonglin
    Han, Yuejiang
    Ji, Zhenyu
    Li, Hengbo
    Liu, Yuanzheng
    Wei, Yifan
    Chen, Cheng
    He, Xiang
    Wu, Mingyan
    [J]. CHEMSUSCHEM, 2023, 16 (07)
  • [3] Electrochemistry and electrochemiluminescence from a redox-active metal-organic framework
    Xu, Yang
    Yin, Xue-Bo
    He, Xi-Wen
    Zhang, Yu-Kui
    [J]. BIOSENSORS & BIOELECTRONICS, 2015, 68 : 197 - 203
  • [4] Redox-active bistable molecular switch in a metal-organic framework
    Chen, Qishui
    Sun, Junling
    Hod, Idan
    Li, Peng
    Hupp, Joseph
    Farha, Omar
    Stoddart, James
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [5] Redox-Active Tin Metal-Organic Framework with a Thiolate-Based Ligand
    Kamakura, Yoshinobu
    Fujisawa, Satoshi
    Takahashi, Koki
    Toshima, Hiroki
    Nakatani, Yuka
    Yoshikawa, Hirofumi
    Saeki, Akinori
    Ogasawara, Kazuyoshi
    Tanaka, Daisuke
    [J]. INORGANIC CHEMISTRY, 2021, 60 (17) : 12691 - 12695
  • [6] Adsorption of Nitrogen Dioxide in a Redox-Active Vanadium Metal-Organic Framework Material
    Han, Xue
    Hong, Yuexian
    Ma, Yujie
    Lu, Wanpeng
    Li, Jiangnan
    Lin, Longfei
    Sheveleva, Alena M.
    Tuna, Floriana
    McInnes, Eric J. L.
    Dejoie, Catherine
    Sun, Junliang
    Yang, Sihai
    Schroder, Martin
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (36) : 15235 - 15239
  • [7] Mechanism of electrochemical lithiation of a metal-organic framework without redox-active nodes
    Tang, Bohejin
    Huang, Shuping
    Fang, Yuan
    Hu, Jinbo
    Malonzo, Camille
    Truhlar, Donald G.
    Stein, Andreas
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2016, 144 (19):
  • [8] A Redox-Active Bistable Molecular Switch Mounted inside a Metal-Organic Framework
    Chen, Qishui
    Sun, Junling
    Li, Peng
    Hod, Idan
    Moghadam, Peyman Z.
    Kean, Zachary S.
    Snurr, Randall Q.
    Hupp, Joseph T.
    Farha, Omar K.
    Stoddart, J. Fraser
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (43) : 14242 - 14245
  • [9] DFT study of redox-active metal-organic frameworks
    Jelic, Jelena
    Denysenko, Dmytro
    Volkmer, Dirk
    Reuter, Karsten
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [10] Redox-Active Cobalt(II/III) Metal-Organic Framework for Selective Oxidation of Cyclohexene
    Zhang, Tao
    Hu, Yue-Qiao
    Han, Tian
    Zhai, Yuan-Qi
    Zheng, Yan-Zhen
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (18) : 15786 - 15792