On-line Identification of an Electro-hydraulic System using Recursive Least Square

被引:12
|
作者
Ghazali, Rozaimi [1 ]
Sam, Yahaya Md [1 ]
Rahmat, Mohd Fua'ad [1 ]
Zulfatman [1 ]
机构
[1] Univ Teknol Malaysia, Fac Elect Engn, Skudai 81310, Johor, Malaysia
关键词
System identification; Recursive least square; auto regression with exogenous input; Electro-hydraulic system;
D O I
10.1109/SCORED.2009.5442965
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents experimental on-line identification of an electro-hydraulic system represented by a discrete time model. A recursive least square (RLS) method is used to estimate the unknown parameters of the system based on auto regression with exogenous input (ARX) model. Residual analysis is used for model validation. Results are presented which show variations in parameters of the electro-hydraulic system.
引用
收藏
页码:471 / 474
页数:4
相关论文
共 50 条
  • [1] On-line training and pruning for recursive least square algorithms
    Leung, CS
    Wong, KW
    Sum, PF
    Chan, LW
    ELECTRONICS LETTERS, 1996, 32 (23) : 2152 - 2153
  • [2] Practical parallel position-force controller for electro-hydraulic servo drive using on-line identification
    Wos P.
    Dindorf R.
    Wos, Piotr (wos@tu.kielce.pl), 1600, Springer Science and Business Media Deutschland GmbH (04): : 52 - 58
  • [3] System Identification of Electro-Hydraulic Actuator System using ANFIS Approach
    Ling, T. G.
    Rahmat, M. F.
    Husain, A. R.
    JURNAL TEKNOLOGI, 2014, 67 (05):
  • [4] On-line Compensation of Magnetic Position Sensor using Recursive Least Square Method
    Ji-Won, Kim
    Seok-Hwan, Moon
    Byung-Gun, Park
    2015 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2015, : 787 - 792
  • [5] Optimization of the electro-hydraulic servo loading based on least square and SVDUKF algorithms
    Yang, Zhao-Jun
    Yang, Chuan-Gui
    Chen, Fei
    Wang, Dong-Liang
    Ma, Shuai
    Liu, Bo
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2014, 44 (02): : 392 - 397
  • [6] Analysis and On-line Measurement Method of Kinetic Energy Stiffness for Mechanical Electro-hydraulic System
    Yang, Bin
    Gu, Lichen
    2016 13TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS AND AMBIENT INTELLIGENCE (URAI), 2016, : 604 - 609
  • [7] Neural network identification of the electro-hydraulic servo system
    He, Hong
    Zhou, Entao
    Sun, Wei
    Zhou, Shichang
    Shi, Weixiang
    Lin, Tingqi
    American Society of Mechanical Engineers, The Fluid Power and Systems Technology Division (Publication) FPST, 1997, 4 : 27 - 32
  • [8] IDENTIFICATION OF ELECTRO-HYDRAULIC ACTUATOR USING FRACTIONAL MODEL
    Yusof, Nuzaihan Mhd
    Ishak, Norlela
    Adnan, Ramli
    Sam, Yahaya Md
    Tajjudin, Mazidah
    Rahiman, Mohd Hezri Fazalul
    INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS, 2016, 9 (01) : 32 - 48
  • [9] Identification and adaptive control for electro-hydraulic servo system using neural networks
    Huang, AY
    Rong, YM
    Zhang, ZF
    Hu, JJ
    1997 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT PROCESSING SYSTEMS, VOLS 1 & 2, 1997, : 688 - 692
  • [10] System Identification and Model Predictive Control using CVXGEN for Electro-Hydraulic Actuator
    Liang, Xuan Wong L.
    Faudzi, Ahmad Athif Mohd
    Ismail, Zool Hilmi
    INTERNATIONAL JOURNAL OF INTEGRATED ENGINEERING, 2019, 11 (04): : 166 - 174