All-Optical Self-Referenced Transverse Position Sensing with Subnanometer Precision

被引:14
|
作者
Tischler, Nora [1 ]
Stark, Johannes [2 ,3 ]
Zambrana-Puyalto, Xavier [4 ,9 ]
Fernandez-Corbaton, Ivan [5 ]
Vidal, Xavier [2 ,3 ]
Molina-Terriza, Gabriel [6 ,7 ,8 ]
Juan, Mathieu L. [9 ]
机构
[1] Griffith Univ, Ctr Quantum Dynam, Brisbane, Qld 4111, Australia
[2] Macquarie Univ, Dept Phys & Astron, N Ryde, NSW 2109, Australia
[3] Macquarie Univ, ARC Ctr Engn Quantum Syst, N Ryde, NSW 2109, Australia
[4] Ist Italiano Tecnol, Via Morego 30, I-16136 Genoa, Italy
[5] Kalsruhe Inst Technol, Kalsruhe, Baden Wuerttemb, Germany
[6] Ctr Fis Mat MPC, Donostia San Sebastian 20018, Spain
[7] DIPC, Donostia San Sebastian 20018, Spain
[8] Basque Fdn Sci, Ikerbasque, Bilbao 48013, Spain
[9] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, A-6020 Innsbruck, Austria
来源
ACS PHOTONICS | 2018年 / 5卷 / 09期
基金
澳大利亚研究理事会;
关键词
position sensing; angular momentum; nanoparticle; helicity; symmetry breaking; FLUORESCENT-PROBES; MICROSCOPY; LOCALIZATION; NANOPARTICLES; SCATTERING;
D O I
10.1021/acsphotonics.8b00532
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The emergence of technologies operating at the nanometer scale for applications as varied as nano fabrication and super-resolution microscopy has driven the need for ever more accurate spatial localization. In this context, nanostructures have been used as probes in order to provide a reference to track lateral drifts in the system. Yet nanometer precision remains challenging and usually involves complicated measurement apparatus. In this work we report a simple method based on symmetry considerations to measure the position of a subwavelength nanostructure. For a particular choice of structures, gold nanoparticles, we demonstrate a subnanometer lateral precision of 0.55 nm. The versatility of the method also allows for the use of different structures, offering a promising opportunity for subnanometer positioning accuracy for a wide variety of systems.
引用
收藏
页码:3628 / 3633
页数:11
相关论文
共 50 条
  • [1] Synthesis and all-optical self-referenced measurement of vectorial optical arbitrary waveform
    Chen, Chi-Cheng
    Yang, Shang-Da
    [J]. 2015 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2015,
  • [2] Self-referenced nanometric displacement sensing assisted by optical anapole mode
    Wu, Jingzhi
    Yang, Hengze
    Wang, Yanhong
    Li, Mengwei
    [J]. TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2022, 44 (13) : 2611 - 2615
  • [3] Self-referenced Doppler optical coherence tomography
    Yazdanfar, S
    Izatt, JA
    [J]. COHERENCE DOMAIN OPTICAL METHODS AND OPTICAL COHERENCE TOMOGRAPHY IN BIOMEDICINE VII, 2003, 4956 : 213 - 224
  • [4] Self-referenced Doppler optical coherence tomography
    Yazdanfar, S
    Izatt, JA
    [J]. OPTICS LETTERS, 2002, 27 (23) : 2085 - 2087
  • [5] Polarization-based sensing with a self-referenced sample
    Lakowicz, JR
    Gryczynski, I
    Gryczynski, Z
    Tolosa, L
    Dattelbaum, JD
    Rao, G
    [J]. APPLIED SPECTROSCOPY, 1999, 53 (09) : 1149 - 1157
  • [6] All-MOS self-referenced temperature sensor
    Xie, S.
    Theuwissen, A.
    [J]. ELECTRONICS LETTERS, 2019, 55 (19) : 1045 - 1046
  • [7] Self-referenced prism deflection measurement schemes with microradian precision
    Olson, R
    Paul, J
    Bergeson, S
    Durfee, DS
    [J]. APPLIED OPTICS, 2005, 44 (22) : 4639 - 4647
  • [8] Hierarchical patterning of organic molecules for self-referenced vapor sensing
    Chang, Meng-Jie
    Ai, Yong
    Zhang, Li
    Gao, Fei
    Zhang, Hao-Li
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (16) : 7704 - 7707
  • [9] Self-Referenced Temperature Sensing with a Lithium Niobate Microdisk Resonator
    Luo, Rui
    Jiang, Haowei
    Liang, Hanxiao
    Lin, Qiang
    [J]. 2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2017,
  • [10] A Self-referenced and regulated sensing solution for PCM with OTS selector
    Gasquez, J.
    Giraud, B.
    Boivin, P.
    Moustapha-Rabault, Y.
    Della Marca, V.
    Walder, J. P.
    Portal, J. M.
    [J]. PROCEEDINGS OF THE 2021 IFIP/IEEE INTERNATIONAL CONFERENCE ON VERY LARGE SCALE INTEGRATION (VLSI-SOC), 2021, : 72 - 77