On the bounded cohomology for ergodic nonsingular actions of amenable groups

被引:0
|
作者
Danilenko, Alexandre, I [1 ]
机构
[1] Natl Acad Sci Ukraine, B Verkin Inst Low Temp Phys & Engn, 47 Nauky Ave, UA-61103 Kharkiv, Ukraine
关键词
D O I
10.1007/s11856-021-2165-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Gamma be an amenable countable discrete group. Fix an ergodic free non-singular action of Gamma on a nonatomic standard probability space. Let G be a compactly generated locally compact second countable group such that the closure of the group of inner automorphisms of G is compact in the natural topology. It is shown that there exists a bounded ergodic G-valued cocycle of Gamma.
引用
收藏
页码:421 / 436
页数:16
相关论文
共 50 条
  • [1] On the bounded cohomology for ergodic nonsingular actions of amenable groups
    Alexandre I. Danilenko
    [J]. Israel Journal of Mathematics, 2021, 243 : 421 - 436
  • [2] On the bounded cohomology of ergodic group actions
    Aaronson, Jon
    Weiss, Benjamin
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2020, 141 (01): : 1 - 21
  • [3] On the bounded cohomology of ergodic group actions
    Jon Aaronson
    Benjamin Weiss
    [J]. Journal d'Analyse Mathématique, 2020, 141 : 1 - 21
  • [4] Ergodic amenable actions of algebraic groups
    Raja, CRE
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2004, 46 : 97 - 100
  • [5] AMENABLE ACTIONS, INVARIANT MEANS AND BOUNDED COHOMOLOGY
    Brodzki, Jacek
    Niblo, Graham A.
    Nowak, Piotr W.
    Wright, Nick
    [J]. JOURNAL OF TOPOLOGY AND ANALYSIS, 2012, 4 (03) : 321 - 334
  • [6] COHOMOLOGY FOR ERGODIC ACTIONS OF COUNTABALE GROUPS
    WESTMAN, JJ
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 30 (02) : 318 - &
  • [7] AMENABLE ERGODIC ACTIONS OF GROUPS AND THE RANGES OF COCYCLES
    GOLODETS, VJ
    SINELSHCHIKOV, SD
    [J]. DOKLADY AKADEMII NAUK SSSR, 1990, 312 (06): : 1296 - 1299
  • [8] THE ERGODIC DECOMPOSITION DEFINED BY ACTIONS OF AMENABLE GROUPS
    Zaharopol, Radu
    [J]. COLLOQUIUM MATHEMATICUM, 2021, 165 (02) : 285 - 319
  • [9] Approximate Invariance for Ergodic Actions of Amenable Groups
    Bjorklund, Michael
    Fish, Alexander
    [J]. DISCRETE ANALYSIS, 2019, : 56
  • [10] INDUCED AND AMENABLE ERGODIC ACTIONS OF LIE GROUPS
    ZIMMER, RJ
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1978, 11 (03): : 407 - 428