SYNTACTIC COMPLEXITY OF R- AND J-TRIVIAL REGULAR LANGUAGES

被引:3
|
作者
Brzozowski, Janusz [1 ]
Li, Baiyu [1 ]
机构
[1] Univ Waterloo, David R Cheriton Sch Comp Sci, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Finite automaton; J-trivial; monoid; regular language; R-trivial; semigroup; syntactic complexity;
D O I
10.1142/S0129054114400097
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The syntactic complexity of a subclass of the class of regular languages is the maximal cardinality of syntactic semigroups of languages in that class, taken as a function of the state complexity n of these languages. We prove that n! and [e(n - 1)!] are tight upper bounds for the syntactic complexity of R- and J-trivial regular languages, respectively.
引用
收藏
页码:807 / 821
页数:15
相关论文
共 50 条
  • [1] ORDERED AND J-TRIVIAL SEMIGROUPS AS DIVISORS OF SEMIGROUPS OF LANGUAGES
    Vernitski, Alexei
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2008, 18 (07) : 1223 - 1229
  • [2] FINITE J-TRIVIAL MONOIDS
    STRAUBING, H
    SEMIGROUP FORUM, 1980, 19 (02) : 107 - 110
  • [3] Limit varieties of J-trivial monoids
    Olga B. Sapir
    Semigroup Forum, 2021, 103 : 236 - 260
  • [4] On join irreducible J-trivial semigroups
    Lee, Edmond W. H.
    Rhodes, John
    Steinberg, Benjamin
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2022, 147 : 43 - 78
  • [5] Syntactic complexity of bifix-free regular languages
    Szykula, Marek
    Wittnebel, John
    THEORETICAL COMPUTER SCIENCE, 2019, 787 : 45 - 76
  • [6] Ordered monoids and J-trivial monoids
    Henckell, K
    Pin, JE
    ALGORITHMIC PROBLEMS IN GROUPS AND SEMIGROUPS, 2000, : 121 - 137
  • [7] Limit varieties of J-trivial monoids
    Sapir, Olga B.
    SEMIGROUP FORUM, 2021, 103 (01) : 236 - 260
  • [8] Pseudovariety joins involving J-trivial semigroups
    Almeida, J
    Azevedo, A
    Zeitoun, M
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 1999, 9 (01) : 99 - 112
  • [9] Classification of limit varieties of J-trivial monoids
    Gusev, Sergey, V
    Sapir, Olga B.
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (07) : 3007 - 3027
  • [10] POWER MONOIDS AND FINITE J-TRIVIAL MONOIDS
    MARGOLIS, SW
    PIN, JE
    SEMIGROUP FORUM, 1984, 29 (1-2) : 99 - 108