Iron and manganese doped zinc-blende GaN

被引:24
|
作者
Fong, CY [1 ]
Gubanov, VA
Boekema, C
机构
[1] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
[2] San Jose State Univ, Dept Phys, San Jose, CA 96192 USA
关键词
zinc-blende GaN; iron; manganese;
D O I
10.1007/s11664-004-0266-8
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The electronic structure of Mn and Fe doping impurities in zinc-blende gallium nitride (c-GaN) crystal lattice have been investigated by the LMTO-TB method. The calculations used the 128 site supercells (64 atoms and 64 empty spheres with an impurity at the origin) with Mn and Fe atoms replacing ions in cation and anion sublattices. It is shown that Mn and Fe ions stay magnetic for all types of substitutions in c-GaN crystal lattice. Fe magnetic moment was found to be 3.5 mu (B) and 1.0 mu (B) for cation and anion substitutions, respectively. Similar data for Mn, magnetic moments are 3.3 mu (B), and 1.9 mu (B), The moments are highly localized, though some weak polarization is seen at the closest atoms to the impurity. The total energies for supercells with and without magnetic impurities are used to determine the most probable single substitutional sites for Fe and Mn in c-GaN. The energies of magnetic electrons levels relative to the valence and conduction bands of the host crystal are analyzed by making use of the total and partial densities of states. The results show that combination of optoelectronic and magnetic properties may well be possible for c-GaN iron and Mn doped systems.
引用
收藏
页码:1067 / 1073
页数:7
相关论文
共 50 条
  • [1] Iron and manganese doped zinc-blende GaN
    C. Y. Fong
    V. A. Gubanov
    C. Boekema
    Journal of Electronic Materials, 2000, 29 : 1067 - 1073
  • [2] Surface reconstruction of zinc-blende GaN
    Bykhovski, AD
    Shur, MS
    APPLIED PHYSICS LETTERS, 1996, 69 (16) : 2397 - 2399
  • [3] Surface kinetics of zinc-blende (001)GaN
    Brandt, O
    Yang, H
    Ploog, KH
    PHYSICAL REVIEW B, 1996, 54 (07): : 4432 - 4435
  • [4] Zinc-blende GaN: Ab initio calculations
    Alves, J.L.A.
    Alves, H.W.Leite
    de Oliveira, C.
    Valadao, R.D.S.C.
    Leite, J.R.
    1997, Elsevier Science S.A., Lausanne, Switzerland (B50): : 1 - 3
  • [5] Zinc-blende GaN: ab initio calculations
    Alves, JLA
    Alves, HWL
    de Oliveira, C
    Valadao, RDSC
    Leite, JR
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1997, 50 (1-3): : 57 - 60
  • [6] DFT applied to the study of carbon-doped zinc-blende (cubic) GaN
    Espitia, M. J.
    Ortega-Lopez, C.
    Rodriguez Martinez, J. A.
    WORKSHOP ON PROCESSING PHYSIC-CHEMISTRY ADVANCED (WPPCA), 2016, 743
  • [7] Hexagonal GaN microdisk with wurtzite/zinc-blende GaN crystal phase nano-heterostructures and high quality zinc-blende GaN crystal layer
    Kouno, Tetsuya
    Sakai, Masaru
    Kishino, Katsumi
    Hara, Kazuhiko
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2014, 53 (06)
  • [8] Electronic structures of zinc-blende GaN (001) surface
    Cai, Duan-Jun
    Feng, Xia
    Zhu, Zi-Zhong
    Kang, Jun-Yong
    2001, Science Press (22):
  • [9] Cathodoluminescence spectroscopy of zinc-blende GaN quantum dots
    Buerger, M.
    Schupp, T.
    Lischka, K.
    As, D. J.
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 9, NO 5, 2012, 9 (05): : 1273 - 1277
  • [10] Optical and spin coherence of excitons in zinc-blende GaN
    Brimont, C.
    Gallart, M.
    Cregut, O.
    Hoenerlage, B.
    Gilliot, P.
    Lagarde, D.
    Balocchi, A.
    Amand, T.
    Marie, X.
    Founta, S.
    Mariette, H.
    JOURNAL OF APPLIED PHYSICS, 2009, 106 (05)