Prediction of clinical outcomes for early gastric cancer using radiomic signatures derived from the quantitative texture analysis of conventional CT scans and machine learning.

被引:0
|
作者
Woolsey, Jacob G.
Cardenas-Rodriguez, Julio C.
Lee, Jeeyun
Burkett, Andre
Korn, Ronald Lee
机构
[1] Imaging Endpoints, Scottsdale, AZ USA
[2] Univ Arizona, Tucson, AZ USA
[3] Samsung Med Ctr, Seoul, South Korea
[4] HonorHealth, Scottsdale, AZ USA
关键词
D O I
10.1200/JCO.2018.36.15_suppl.e16091
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
e16091
引用
收藏
页数:1
相关论文
共 12 条
  • [1] Outcome Prediction for SARS-CoV-2 Patients Using Machine Learning Modeling of Clinical, Radiological, and Radiomic Features Derived from Chest CT Images
    Spagnoli, Lorenzo
    Morrone, Maria Francesca
    Giampieri, Enrico
    Paolani, Giulia
    Santoro, Miriam
    Curti, Nico
    Coppola, Francesca
    Ciccarese, Federica
    Vara, Giulio
    Brandi, Nicolo
    Golfieri, Rita
    Bartoletti, Michele
    Viale, Pierluigi
    Strigari, Lidia
    APPLIED SCIENCES-BASEL, 2022, 12 (09):
  • [2] Machine learning analysis for the noninvasive prediction of lymphovascular invasion in gastric cancer using PET/CT and enhanced CT-based radiomics and clinical variables
    Fan, Lijing
    Li, Jing
    Zhang, Huiling
    Yin, Hongkun
    Zhang, Rongguo
    Zhang, Jibin
    Chen, Xuejun
    ABDOMINAL RADIOLOGY, 2022, 47 (04) : 1209 - 1222
  • [3] Machine learning analysis for the noninvasive prediction of lymphovascular invasion in gastric cancer using PET/CT and enhanced CT-based radiomics and clinical variables
    Lijing Fan
    Jing Li
    Huiling Zhang
    Hongkun Yin
    Rongguo Zhang
    Jibin Zhang
    Xuejun Chen
    Abdominal Radiology, 2022, 47 : 1209 - 1222
  • [4] Early prediction of clinical benefit of treating ovarian cancer using quantitative CT image feature analysis
    Qiu, Yuchen
    Tan, Maxine
    McMeekin, Scott
    Thai, Theresa
    Ding, Kai
    Moore, Kathleen
    Liu, Hong
    Zheng, Bin
    ACTA RADIOLOGICA, 2016, 57 (09) : 1149 - 1155
  • [5] Machine Learning-powered Prediction of Recurrence in Patients with Non-small Cell Lung Cancer Using Quantitative Clinical and Radiomic Biomarkers
    Moon, Sehwa
    Choi, Dahim
    Lee, Ji-Yeon
    Kim, Myoung Hee
    Hong, Helen
    Kim, Bong-Seog
    Choi, Jang-Hwan
    MEDICAL IMAGING 2020: COMPUTER-AIDED DIAGNOSIS, 2020, 11314
  • [6] Machine learning-based prognostic modeling using clinical data and quantitative radiomic features from chest CT images in COVID-19 patients
    Shiri, Isaac
    Sorouri, Majid
    Geramifar, Parham
    Nazari, Mostafa
    Abdollahi, Mohammad
    Salimi, Yazdan
    Khosravi, Bardia
    Askari, Dariush
    Aghaghazvini, Leila
    Hajianfar, Ghasem
    Kasaeian, Amir
    Abdollahi, Hamid
    Arabi, Hossein
    Rahmim, Arman
    Radmard, Amir Reza
    Zaidi, Habib
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 132
  • [7] Prediction of CD8+T lymphocyte infiltration levels in gastric cancer from contrast-enhanced CT and clinical factors using machine learning
    Xie, Wentao
    Jiang, Sheng
    Xin, Fangjie
    Jiang, Zinian
    Pan, Wenjun
    Zhou, Xiaoming
    Xiang, Shuai
    Xu, Zhenying
    Lu, Yun
    Wang, Dongsheng
    MEDICAL PHYSICS, 2024, 51 (10) : 7108 - 7118
  • [8] Application of Machine Learning in the Diagnosis of Early Gastric Cancer Using the Kyoto Classification Score and Clinical Features Collected from Medical Consultations
    Sun, Xue
    Zhang, Liping
    Luo, Qingfeng
    Zhou, Yan
    Du, Jun
    Fu, Dongmei
    Wang, Ziyu
    Lei, Yi
    Wang, Qing
    Zhao, Li
    BIOENGINEERING-BASEL, 2024, 11 (10):
  • [9] Integrating machine learning and multi-omics analysis to develop an immune-derived multiple programmed cell death signature for predicting clinical outcomes in gastric cancer
    Li, Chunhong
    Hu, Jiahua
    Li, Mengqin
    Fan, Xiao
    Mao, Yiming
    ONCOLOGIE, 2024,
  • [10] Prediction of peripheral lymph node metastasis (LNM) in thyroid cancer using delta radiomics derived from enhanced CT combined with multiple machine learning algorithms
    Wang, Wenzhi
    Jin, Feng
    Song, Lina
    Yang, Jinfang
    Ye, Yingjian
    Liu, Junjie
    Xu, Lei
    An, Peng
    EUROPEAN JOURNAL OF MEDICAL RESEARCH, 2025, 30 (01)