Boundary controllability of Sobolev-type abstract nonlinear integrodifferential systems

被引:15
|
作者
Balachandran, K
Anandhi, ER
Dauer, JP [1 ]
机构
[1] Univ Tennessee, Dept Math, Chattanooga, TN 37403 USA
[2] Bharathiar Univ, Dept Math, Coimbatore 641046, Tamil Nadu, India
关键词
boundary controllability; nonlinear system; integrodifferential system; delay system; semigroup theory; fixed point theorem;
D O I
10.1016/S0022-247X(02)00522-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Sufficient conditions are established for boundary controllability of various classes of Sobolev-type nonlinear systems including integrodifferential systems in Banach spaces. The results are obtained using the strongly continuous semigroup of operators and the Banach contraction principle. Examples are provided to illustrate the theory. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:446 / 464
页数:19
相关论文
共 50 条
  • [1] Controllability of Sobolev-type integrodifferential systems in Banach spaces
    Balachandran, K
    Dauer, JP
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 217 (02) : 335 - 348
  • [2] Controllability of Sobolev-type semilinear integrodifferential systems in Banach spaces
    Balachandran, K
    Sakthivel, R
    APPLIED MATHEMATICS LETTERS, 1999, 12 (07) : 63 - 71
  • [3] Controllability of Sobolev-Type Linear Ensemble Systems
    Zhang, Wei
    Tie, Lin
    Li, Jr-Shin
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 4097 - 4102
  • [4] Boundary Controllability of Nonlinear Fractional Integrodifferential Systems
    Ahmed, Hamdy M.
    ADVANCES IN DIFFERENCE EQUATIONS, 2010,
  • [5] Boundary Controllability of Nonlinear Fractional Integrodifferential Systems
    Hamdy M. Ahmed
    Advances in Difference Equations, 2010
  • [6] Periodic boundary value problem for nonlinear Sobolev-type equations
    Kaikina, E. I.
    Naumkin, P. I.
    Shishmarev, I. A.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2010, 44 (03) : 171 - 181
  • [7] Periodic boundary value problem for nonlinear Sobolev-type equations
    E. I. Kaikina
    P. I. Naumkin
    I. A. Shishmarev
    Functional Analysis and Its Applications, 2010, 44 : 171 - 181
  • [8] Controllability of nonlinear Ito type stochastic integrodifferential systems
    Balachandran, K.
    Karthikeyan, S.
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2008, 345 (04): : 382 - 391
  • [9] New results on approximate controllability of fractional delay integrodifferential systems of order 1 <r < 2 with Sobolev-type
    Ma, Yong-Ki
    Raja, M. Mohan
    Shukla, Anurag
    Vijayakumar, V.
    Nisar, Kottakkaran Sooppy
    Thilagavathi, K.
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 81 : 501 - 518
  • [10] Null boundary controllability of nonlinear integrodifferential systems with Rosenblatt process
    AL-Nahhas, Mahmoud A.
    Ahmed, Hamdy M.
    El-Owaidy, Hassan M.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2020, 26 (02): : 113 - 127