共 50 条
Empirical Bayes testing for double exponential distributions
被引:3
|作者:
Liang, Tachen
[1
]
机构:
[1] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
关键词:
asymptotic optimality;
rate of convergence;
regret;
D O I:
10.1080/03610920601125987
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
This article deals with the problem of testing the hypotheses H-0 : theta <= theta(0) against H-1 : theta > theta(0) for the location parameter theta of a double exponential distribution with probability density f(x vertical bar theta) = exp(-vertical bar x - theta vertical bar)/2 using the empirical Bayes approach. We construct an empirical Bayes test delta(*)(n) and study its associated asymptotic optimality. Three classes of prior distributions are considered. For priors in each class, the associated rates of convergence of delta(*)(n) are established. The rates are: O(n(-(2m+1)/(2m+2))), O(n(-1)(ln n)1/s), and O(n(-1)), respectively, where m >= 1 and s > 0.
引用
收藏
页码:1543 / 1553
页数:11
相关论文