Global existence and blow-up of solutions for a higher-order Kirchhoff-type equation with nonlinear dissipation

被引:27
|
作者
Li, FC [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100080, Peoples R China
关键词
higher-order Kirchhoff-type equation; nonlinear dissipation; global existence; blow-up;
D O I
10.1016/j.am1.2003.07.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the higher-order Kirchhoff-type equation with nonlinear dissipation u(tt) + (integral(Omega) \D(m)u\ dx)(q) (-Delta)(m)u + u(t)\u(t)\(r) = \u\(P)u, x is an element of Omega, t > 0, in a bounded domain, where m > 1 is a positive integer, q, p, r > 0 are positive constants. We obtain that the solution exists globally if p less than or equal to r, while if p > max{r, 2q}, then for any initial data with negative initial energy, the solution blows up at finite time in Lp+2 norm. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1409 / 1414
页数:6
相关论文
共 50 条