Thermal denaturation of A-DNA

被引:8
|
作者
Valle-Orero, J. [1 ,2 ,3 ]
Wildes, A. R. [1 ]
Theodorakopoulos, N. [4 ,5 ]
Cuesta-Lopez, S. [2 ,6 ]
Garden, J-L [7 ,8 ]
Danilkin, S. [9 ]
Peyrard, M. [2 ]
机构
[1] Inst Max Von Laue Paul Langevin, F-38042 Grenoble 9, France
[2] Ecole Normale Super Lyon, Phys Lab, CNRS UMR 5672, F-69364 Lyon 7, France
[3] Columbia Univ, Dept Biol Sci, New York, NY 10027 USA
[4] Natl Hellen Res Fdn, Inst Theoret & Phys Chem, GR-11635 Athens, Greece
[5] Univ Konstanz, Fachbereich Phys, D-78457 Constance, Germany
[6] Univ Burgos, Burgos 09001, Spain
[7] CNRS, F-38042 Grenoble, France
[8] Univ Grenoble Alpes, Inst NEEL, F-38042 Grenoble, France
[9] ANSTO, Kirrawee Dc, NSW 2232, Australia
来源
NEW JOURNAL OF PHYSICS | 2014年 / 16卷
关键词
DNA melting; statistical mechanics; neutron scattering; nonlinear lattice dynamics; MOLECULAR-STRUCTURE; NUCLEIC-ACIDS; STABILITY; FIBERS; FILMS; SIZE;
D O I
10.1088/1367-2630/16/11/113017
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The DNA molecule can take various conformational forms. Investigations focus mainly on the so-called 'B-form', schematically drawn in the famous paper by Watson and Crick [1]. This is the usual form of DNA in a biological environment and is the only form that is stable in an aqueous environment. Other forms, however, can teach us much about DNA. They have the same nucleotide base pairs for 'building blocks' as B-DNA, but with different relative positions, and studying these forms gives insight into the interactions between elements under conditions far from equilibrium in the B-form. Studying the thermal denaturation is particularly interesting because it provides a direct probe of those interactions which control the growth of the fluctuations when the 'melting' temperature is approached. Here we report such a study on the 'A-form' using calorimetry and neutron scattering. We show that it can be carried further than a similar study on B-DNA, requiring the improvement of thermodynamic models for DNA.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Thermal Fluctuation Spectroscopy of DNA Thermal Denaturation
    Nagapriya, K. S.
    Raychaudhuri, A. K.
    BIOPHYSICAL JOURNAL, 2010, 99 (08) : 2666 - 2675
  • [2] Microscopic description of DNA thermal denaturation
    Debowski, Mateusz
    Lachowicz, Miroslaw
    Szymanska, Zuzanna
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 361 : 47 - 60
  • [3] Thermal denaturation of a helicoidal DNA model
    Barbi, M
    Lepri, S
    Peyrard, M
    Theodorakopoulos, N
    PHYSICAL REVIEW E, 2003, 68 (06):
  • [4] THERMAL DENATURATION OF RAM SPERM DNA
    BEIL, RE
    GRAVES, CN
    JOURNAL OF ANIMAL SCIENCE, 1973, 37 (01) : 300 - 301
  • [5] Effect of diethylsulfoxide on the thermal denaturation of DNA
    Markarian, SA
    Asatryan, AM
    Grigoryan, KR
    Sargsyan, HR
    BIOPOLYMERS, 2006, 82 (01) : 1 - 5
  • [6] The time duration for DNA thermal denaturation
    Calvo, Gabriel F.
    Alvarez-Estrada, Ramon F.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (03)
  • [7] Study of thermal fluctuations during thermal denaturation of DNA
    Nagapriya, KS
    Raychaudhuri, AK
    Chatterji, D
    FLUCTUATIONS AND NOISE IN BIOLOGICAL, BIOPHYSICAL, AND BIOMEDICAL SYSTEMS III, 2005, 5841 : 81 - 91
  • [8] AN A-DNA TRIPLET CODE - THERMODYNAMIC RULES FOR PREDICTING A-DNA AND B-DNA
    BASHAM, B
    SCHROTH, GP
    HO, PS
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (14) : 6464 - 6468
  • [9] MODELING DNA THERMAL DENATURATION AT THE MESOSCOPIC LEVEL
    Dolfin, Marina
    Lachowicz, Miroslaw
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, 19 (08): : 2469 - 2482
  • [10] Fractal aggregation of DNA after thermal denaturation
    Yan, LF
    Iwasaki, H
    CHAOS SOLITONS & FRACTALS, 2004, 20 (04) : 877 - 881