Lorentz spacetimes of constant curvature

被引:127
|
作者
Mess, Geoffrey [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA
基金
美国国家科学基金会;
关键词
spacetimes; flat; anti-de Sitter; de Sitter; globally hyperbolic; domain of dependence;
D O I
10.1007/s10711-007-9155-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is unpublished work of Geoffrey Mess written in 1990, which gives a classification of flat and anti-de Sitter domains of dependence in 2+1 dimensions.
引用
收藏
页码:3 / 45
页数:43
相关论文
共 50 条
  • [1] On Lorentz spacetimes of constant curvature
    Gueritaud, Francois
    [J]. GEOMETRY, GROUPS AND DYNAMICS, 2015, 639 : 253 - 269
  • [2] Lorentz spacetimes of constant curvature
    Geoffrey Mess
    [J]. Geometriae Dedicata, 2007, 126 : 3 - 45
  • [3] GEOMETRY AND TOPOLOGY OF COMPLETE LORENTZ SPACETIMES OF CONSTANT CURVATURE
    Danciger, Jeffrey
    Gueritaud, Francois
    Kassel, Fanny
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2016, 49 (01): : 1 - 56
  • [4] Constant mean curvature foliations in cosmological spacetimes
    Rendall, AD
    [J]. HELVETICA PHYSICA ACTA, 1996, 69 (04): : 490 - 500
  • [5] Lorentz surfaces with constant curvature and their physical interpretation
    Catoni, F
    Cannata, R
    Catoni, V
    Zampetti, P
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2005, 120 (01): : 37 - 51
  • [6] Integral geometry in constant curvature Lorentz spaces
    Gil Solanes
    Eberhard Teufel
    [J]. manuscripta mathematica, 2005, 118 : 411 - 423
  • [7] SPACETIMES WITH COSMOLOGICAL CONSTANT AND A CONFORMAL KILLING FIELD HAVE CONSTANT CURVATURE
    GARFINKLE, D
    TIAN, QJ
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1987, 4 (01) : 137 - 139
  • [8] Spacelike hypersurfaces of constant mean curvature in certain spacetimes
    Alias, LJ
    Romero, A
    Sanchez, M
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (01) : 655 - 661
  • [9] Constant mean curvature foliations of simplicial flat spacetimes
    Andersson, L
    [J]. COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2005, 13 (05) : 963 - 979
  • [10] Cosmological spacetimes not covered by a constant mean curvature slicing
    Isenberg, J
    Rendall, AD
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (11) : 3679 - 3688