On equivariant principal bundles over wonderful compactifications

被引:0
|
作者
Biswas, Indranil [1 ]
Kannan, S. Senthamarai [2 ]
Nagaraj, D. S. [3 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
[2] Chennai Math Inst, Siruseri 603103, Kelambakkam, India
[3] Inst Math Sci, Madras 600113, Tamil Nadu, India
关键词
Wonderful compactification; Equivariant principal bundle; Tangent bundle; Stability;
D O I
10.1016/j.jalgebra.2014.12.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simple algebraic group of adjoint type over C, and let M be the wonderful compactification of a symmetric space G/H. Take a (G) over tilde -equivariant principal R-bundle Eon M, where R is a complex reductive algebraic group and a is the universal cover of (G) over tilde. If the action of the isotropy group (H) over tilde on the fiber of E at the identity coset is irreducible, then we prove that E is polystable with respect to any polarization on M. Further, for wonderful compactification of the quotient of PSL(n, C), n not equal 4 (respectively, PSL(2n, C), n> 1) by the normalizer of the projective orthogonal group (respectively, the projective symplectic group), we prove that the tangent bundle is stable with respect to any polarization on the wonderful compactification. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:313 / 326
页数:14
相关论文
共 50 条