A mathematical modeling approach to assess biological control of an orange tree disease

被引:2
|
作者
Bulai, Iulia Martina [1 ,4 ]
Esteves, Ana Cristina [2 ]
Lima, Fernanda [2 ]
Venturino, Ezio [3 ,4 ]
机构
[1] Univ Basilicata, Dipartimento Matemat Informat & Econ, Potenza, Italy
[2] Univ Aveiro, Dept Biol, Ctr Environm & Marine Studies, CESAM, Campus Univ Santiago, P-3810193 Aveiro, Portugal
[3] Univ Torino, Dipartimento Matemat Giuseppe Peano, Turin, Italy
[4] Res Grp GNCS, Turin, Italy
关键词
Orange tree; Guignardia citricarpa; Trichoderma harzianum T1A; Mathematical model; CITRUS BLACK SPOT; VOLATILE ORGANIC-COMPOUNDS; GUIGNARDIA-CITRICARPA;
D O I
10.1016/j.aml.2021.107140
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The model presented and investigated here describes the interaction between the orange tree and two different microorganisms, the pathogen fungus Guignardia citricarpa and the antagonist Trichoderma harzianum T1A. The pathogen-free point and coexistence are the only possible system's equilibria. The pathogen-free point bifurcates from coexistence when the antagonist strength is sufficiently high, but does not appear to be much dependent on the amount of beneficial fungus employed. This result represents a relevant guideline for the applied ecologist and for the farmers. Sensitivity analysis in suitable parameter spaces is performed numerically. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Impact of Awareness to Control Malaria Disease: A Mathematical Modeling Approach
    Ibrahim, Malik Muhammad
    Kamran, Muhammad Ahmad
    Naeem Mannan, Malik Muhammad
    Kim, Sangil
    Jung, Il Hyo
    [J]. COMPLEXITY, 2020, 2020
  • [2] Mathematical modeling for nonlinear control: a Hamiltonian approach
    Schlacher, K.
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2008, 79 (04) : 829 - 849
  • [3] Mathematical modeling and control of population systems: Applications in biological pest control
    Rafikov, M.
    Balthazar, J. M.
    von Bremen, H. F.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2008, 200 (02) : 557 - 573
  • [4] Mathematical modeling and control of population systems: Applications in biological pest control
    Department of Physics, Statistics and Mathematics, UNJUI, Ijui University, Cx.P. 560, 98700-000 Ijui, RS, Brazil
    不详
    不详
    [J]. Appl. Math. Comput., 1600, 2 (557-573):
  • [5] MATHEMATICAL MODELING OF MALARIA DISEASE WITH CONTROL STRATEGY
    Oke, Segun I.
    Ojo, Michael M.
    Adeniyi, Michael O.
    Matadi, Maba B.
    [J]. COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2020, : 1 - 29
  • [6] A MATHEMATICAL MODELING APPROACH TOWARDS IMMUNOLOGICAL CONTROL OF MINIMAL RESIDUAL DISEASE IN CML PATIENTS
    Glauche, Ingmar
    Fassoni, Artur
    Haehnel, Tom
    Baldow, Christoph
    Roeder, Ingo
    [J]. EXPERIMENTAL HEMATOLOGY, 2017, 53 : S103 - S103
  • [7] Mathematical modeling and analysis of biological control strategy of aphid population
    Huang, Mingzhan
    Liu, Shouzong
    Zhang, Ying
    [J]. AIMS MATHEMATICS, 2022, 7 (04): : 6876 - 6897
  • [8] MATHEMATICAL MODELING OF ORANGE SEED DRYING KINETICS
    Rosa, Daniele Penteado
    Cantu-Lozano, Denis
    Luna-Solano, Guadalupe
    Polachini, Tiago Carregari
    Telis-Romero, Javier
    [J]. CIENCIA E AGROTECNOLOGIA, 2015, 39 (03): : 291 - 300
  • [9] Editorial: Biological Control Systems and Disease Modeling
    Ogunnaike, Babatunde
    Banga, Julio R.
    Bogle, David
    Parker, Robert
    [J]. FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2021, 9
  • [10] Mathematical modeling of biological systems
    Motta, Santo
    Pappalardo, Francesco
    [J]. BRIEFINGS IN BIOINFORMATICS, 2013, 14 (04) : 411 - 422