A Nonconservative Flow Field for Robust Variational Image Segmentation

被引:14
|
作者
Ghosh, Pratim [1 ]
Bertelli, Luca [1 ]
Sumengen, Baris [1 ,2 ]
Manjunath, B. S.
机构
[1] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Vis & Res Lab, Santa Barbara, CA 93106 USA
[2] Like Com, San Mateo, CA 94403 USA
基金
美国国家科学基金会;
关键词
Active contours models; edge flow fields; image segmentation; nonconservative vector fields; ACTIVE CONTOURS;
D O I
10.1109/TIP.2009.2033983
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a robust image segmentation method based on a variational formulation using edge flow vectors. We demonstrate the nonconservative nature of this flow field, a feature that helps in a better segmentation of objects with concavities. A multiscale version of this method is developed and is shown to improve the localization of the object boundaries. We compare and contrast the proposed method with well known state-of-the-art methods. Detailed experimental results are provided on both synthetic and natural images that demonstrate that the proposed approach is quite competitive.
引用
收藏
页码:478 / 490
页数:13
相关论文
共 50 条
  • [1] A multichannel variational model for robust image segmentation under noise
    Romano, R
    Vitulano, D
    W S C G ' 2001, VOLS I & II, CONFERENCE PROCEEDINGS, 2001, : 79 - 86
  • [2] A variational approach on image segmentation
    Tian, Y
    Xu, HB
    Liu, J
    IMAGE EXTRACTION, SEGMENTATION, AND RECOGNITION, 2001, 4550 : 109 - 114
  • [3] Variational Model for Image Segmentation
    Lou, Qiong
    Peng, Jialin
    Wu, Fa
    Kong, Dexing
    ADVANCES IN VISUAL COMPUTING, PT II, 2013, 8034 : 653 - 662
  • [4] Robust vegetation segmentation for image-based field survey
    Moriuchi, Y.
    Nakamura, K.
    Mihara, H.
    Sasaki, T.
    Ito, A.
    Itakura, E.
    Mori, H.
    Murayama, J.
    PRECISION AGRICULTURE'21, 2021, : 419 - 426
  • [5] A variational Bayes approach to image segmentation
    Boccignone, Giuseppe
    Ferraro, Mario
    Napoletano, Paolo
    ADVANCES IN BRAIN, VISION, AND ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2007, 4729 : 234 - +
  • [6] Variational inference for medical image segmentation
    Blaiotta, Claudia
    Cardoso, M. Jorge
    Ashburner, John
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2016, 151 : 14 - 28
  • [7] A novel variational model for image segmentation
    Zhai, Yanli
    Zhang, Dazhi
    Sun, Jiebao
    Wu, Boying
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (08) : 2234 - 2241
  • [8] Deep Variational Model for Image Segmentation
    Ranftl, Rene
    Pock, Thomas
    PATTERN RECOGNITION, GCPR 2014, 2014, 8753 : 107 - 119
  • [9] A variational approach for color image segmentation
    Nasios, N
    Bors, AG
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 1, 2004, : 680 - 683
  • [10] Image Enhancement With PDEs and Nonconservative Advection Flow Fields
    Jaouen, Vincent
    Bert, Julien
    Boussion, Nicolas
    Fayad, Hadi
    Hatt, Mathieu
    Visvikis, Dimitris
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (06) : 3075 - 3088