A modified LGB method for detecting significant effects based on a half-normal probability plot

被引:3
|
作者
Chung, Jong Hee [1 ]
Lim, Yong Bin [1 ]
机构
[1] Ewha Womans Univ, Dept Stat, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Detecting significant effects; Half-normal probability plot; Adjusted box plot; QUANTITATIVE METHOD; ACTIVE CONTRASTS;
D O I
10.1016/j.jkss.2019.01.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In analyzing data from unreplicated factorial designs, the half-normal probability plot is commonly used to screen for the 'vital few' effects. Recently, many formal methods have been proposed to overcome the subjectivity of this plot. Lawson (1998) (hereafter denoted as LGB) suggested a hybrid method based on the half-normal probability plot, which is a blend of Lenth (1989) and Loh (1992) method. The method consists of fitting a simple least squares line to the inliers, which are determined by the Lenth method. The effects exceeding the prediction limits based on the fitted line are candidates for the vital few effects. To improve the accuracy of partitioning the effects into inliers and outliers, we propose a modified LGB method (hereafter denoted as the Mod_LGB method), in which more outliers can be classified by using both the Carling's modification of the box plot (Carling, 2000) and Lenth method. If no outlier exists or there is a wide range in the inliers as determined by the Lenth method, more outliers can be found by the Carling method. A simulation study is conducted in unreplicated 2(4) designs with the number of active effects ranging from 1 to 6 to compare the efficiency of the Lenth method, original LGB methods, and the proposed modified version of the LGB method. (C) 2019 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:568 / 577
页数:10
相关论文
共 50 条