Spatio-temporal Model Combining VMD and AM for Wind Speed Prediction

被引:1
|
作者
Zhao, Yingnan [1 ]
Ji, Peiyuan [1 ]
Chen, Fei [1 ]
Ji, Guanlan [1 ]
Jha, Sunil Kumar [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing 210044, Peoples R China
[2] Univ Informat Technol & Management Rzeszow, IT Fundamentals & Educ Technol Applicat, PL-100031 Rzeszow, Voivodeship, Poland
来源
关键词
Wind speed prediction; gated recurrent unit; squeeze-and-excitation networks; variational mode decomposition; attention mechanism; NEURAL-NETWORK; DECOMPOSITION; MACHINE; ERROR;
D O I
10.32604/iasc.2022.027710
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a spatio-temporal model (VCGA) based on variational mode decomposition (VMD) and attention mechanism. The proposed prediction model combines a squeeze-and- excitation network to extract spatial features and a gated recurrent unit to capture temporal dependencies. Primarily, the VMD can reduce the instability of the original wind speed data and the attention mechanism functions to strengthen the impact of important information. In addition, the VMD and attention mechanism act to avoid a decline in prediction accuracy. Finally, the VCGA trains the decomposition result and derives the final results after merging the prediction result of each component. Contrasting experiments for short-term prediction on the actual wind power dataset prove that VCGA is superior to prior algorithms.
引用
收藏
页码:1001 / 1016
页数:16
相关论文
共 50 条
  • [1] Wind speed prediction using spatio-temporal covariance
    Anup Suryawanshi
    Debraj Ghosh
    [J]. Natural Hazards, 2015, 75 : 1435 - 1449
  • [2] Wind speed prediction using spatio-temporal covariance
    Suryawanshi, Anup
    Ghosh, Debraj
    [J]. NATURAL HAZARDS, 2015, 75 (02) : 1435 - 1449
  • [3] Spatio-Temporal Attention Model with Prior Knowledge for Solar Wind Speed Prediction
    Cai, Puguang
    Yang, Liu
    Sun, Yanru
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT IX, 2023, 14262 : 344 - 355
  • [4] Stochastic spatio-temporal model for wind speed variation in the Arctic
    Mao, Wengang
    Rychlik, Igor
    [J]. OCEAN ENGINEERING, 2018, 165 : 237 - 251
  • [5] Wind Speed Prediction with Spatio-Temporal Correlation: A Deep Learning Approach
    Zhu, Qiaomu
    Chen, Jinfu
    Zhu, Lin
    Duan, Xianzhong
    Liu, Yilu
    [J]. ENERGIES, 2018, 11 (04)
  • [6] Spatio-Temporal Wind Speed Prediction Based on Variational Mode Decomposition
    Zhao, Yingnan
    Ji, Guanlan
    Chen, Fei
    Ji, Peiyuan
    Cao, Yi
    [J]. COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2022, 43 (02): : 719 - 735
  • [7] Spatio-Temporal Prediction of Wind Speed and Direction by Continuous Directional Regime
    Dowell, Jethro
    Weiss, Stephan
    Infield, David
    [J]. 2014 INTERNATIONAL CONFERENCE ON PROBABILISTIC METHODS APPLIED TO POWER SYSTEMS (PMAPS), 2014,
  • [8] Short-term spatio-temporal prediction of wind speed and direction
    Dowell, Jethro
    Weiss, Stephan
    Hill, David
    Infield, David
    [J]. WIND ENERGY, 2014, 17 (12) : 1945 - 1955
  • [9] SPATIO-TEMPORAL WIND SPEED PREDICTION ALGORITHM BASED ON CBAM-DSC-UNet MODEL
    Luyang, Zhao
    Changliang, Liu
    Weiliang, Liu
    Yang, Li
    Xin, Wang
    Jiayao, Kang
    [J]. Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2024, 45 (10): : 497 - 505
  • [10] Spatio-temporal wind speed prediction of multiple wind farms using capsule network
    Zheng, Ling
    Zhou, Bin
    Or, Siu Wing
    Cao, Yijia
    Wang, Huaizhi
    Li, Yong
    Chan, Ka Wing
    [J]. RENEWABLE ENERGY, 2021, 175 : 718 - 730