Estimation of best corrected visual acuity from optical coherence tomography images using deep learning

被引:0
|
作者
Arai, Yusuke [1 ]
Takahashi, Hidenori [1 ]
Yousefi, Siamak [2 ]
Inoda, Satoru [1 ]
Tampo, Hironobu [1 ]
Sakamoto, Shinichi [1 ]
Matsui, Yoshitsugu [3 ]
Kawashima, Hidetoshi [1 ]
Yanagi, Yasuo [4 ]
机构
[1] Jichi Med Univ, Ophthalmol, Shimotsuke, Tochigi, Japan
[2] Univ Tennessee, Hlth Sci Ctr, Knoxville, TN 37996 USA
[3] Mie Univ, Tsu, Mie, Japan
[4] Asahikawa Med Univ, Asahikawa, Hokkaido, Japan
关键词
D O I
暂无
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
1494
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Estimation of the best corrected visual acuity from optical coherence tomography images using deep learning: a validation study
    Takahashi, Hidenori
    Hasegawa, Tetsuya
    Inoda, Satoru
    Arai, Yusuke
    Yousefi, Siamak
    Tampo, Hironobu
    Matsui, Yoshitsugu
    Tanaka, Yoshiaki
    Kawashima, Hidetoshi
    Yanagi, Yasuo
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2020, 61 (07)
  • [2] Development of Deep Learning Models to Predict Best-Corrected Visual Acuity from Optical Coherence Tomography
    Kawczynski, Michael G.
    Bengtsson, Thomas
    Dai, Jian
    Hopkins, J. Jill
    Gao, Simon S.
    Willis, Jeffrey R.
    [J]. TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2020, 9 (02):
  • [3] Prediction of Best-Corrected Visual Acuity from Optical Coherence Tomography in Patients with Neovascular Age-Related Macular Degeneration Using Deep Learning
    Akhlaq, Anam
    Kherani, Saleema
    Jones, Craig
    Campochiaro, Peter
    Liu, Tin
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2021, 62 (08)
  • [4] Deep learning to infer visual acuity from optical coherence tomography in diabetic macular edema
    Lin, Ting-Yi
    Chen, Hung-Ruei
    Huang, Hsin-Yi
    Hsiao, Yu-Ier
    Kao, Zih-Kai
    Chang, Kao-Jung
    Lin, Tai-Chi
    Yang, Chang-Hao
    Kao, Chung-Lan
    Chen, Po-Yin
    Huang, Shih-En
    Hsu, Chih-Chien
    Chou, Yu-Bai
    Jheng, Ying-Chun
    Chen, Shih-Jen
    Chiou, Shih-Hwa
    Hwang, De-Kuang
    [J]. FRONTIERS IN MEDICINE, 2022, 9
  • [5] Estimation of best corrected visual acuity based on deep neural network
    Woongsup Lee
    Jin Hyun Kim
    Seongjin Lee
    Kyonghoon Kim
    Tae Seen Kang
    Yong Seop Han
    [J]. Scientific Reports, 12
  • [6] Estimation of best corrected visual acuity based on deep neural network
    Lee, Woongsup
    Kim, Jin Hyun
    Lee, Seongjin
    Kim, Kyonghoon
    Kang, Tae Seen
    Han, Yong Seop
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [7] Prediction of Best-Corrected Visual Acuity With Swept-Source Optical Coherence Tomography Parameters in Keratoconus
    Esaka, Yuri
    Kojima, Takashi
    Dogru, Murat
    Hasegawa, Asato
    Tamaoki, Akeno
    Uno, Yunako
    Nishida, Tomoya
    Nakamura, Tomoaki
    Hara, Syuya
    Ichikawa, Kazuo
    [J]. CORNEA, 2019, 38 (09) : 1154 - 1160
  • [8] Classification of Material Type from Optical Coherence Tomography Images Using Deep Learning
    Sabuncu, Metin
    Ozdemir, Hakan
    [J]. INTERNATIONAL JOURNAL OF OPTICS, 2021, 2021
  • [9] Automatic Segmentation of Retinal Fluid and Photoreceptor Layer from Optical Coherence Tomography Images of Diabetic Macular Edema Patients Using Deep Learning and Associations with Visual Acuity
    Hsu, Huan-Yu
    Chou, Yu-Bai
    Jheng, Ying-Chun
    Kao, Zih-Kai
    Huang, Hsin-Yi
    Chen, Hung-Ruei
    Hwang, De-Kuang
    Chen, Shih-Jen
    Chiou, Shih-Hwa
    Wu, Yu-Te
    [J]. BIOMEDICINES, 2022, 10 (06)
  • [10] Deep Learning Using Preoperative Optical Coherence Tomography Images to Predict Visual Acuity Following Surgery for Idiopathic Full-Thickness Macular Holes
    Kucukgoz, Burak
    Yapici, Muhammed Mutlu
    Murphy, Declan C.
    Spowart, Emma
    Steel, David H.
    Obara, Boguslaw
    [J]. IEEE ACCESS, 2024, 12 : 32911 - 32926