A Collision Avoidance Method Based on Deep Reinforcement Learning

被引:21
|
作者
Feng, Shumin [1 ]
Sebastian, Bijo [2 ]
Ben-Tzvi, Pinhas [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Mech Engn, Robot & Mechatron Lab, Blacksburg, VA 24061 USA
[2] Torc Robot, Blacksburg, VA 24060 USA
关键词
collision avoidance; neural network; deep reinforcement learning; OBSTACLE AVOIDANCE;
D O I
10.3390/robotics10020073
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
This paper set out to investigate the usefulness of solving collision avoidance problems with the help of deep reinforcement learning in an unknown environment, especially in compact spaces, such as a narrow corridor. This research aims to determine whether a deep reinforcement learning-based collision avoidance method is superior to the traditional methods, such as potential field-based methods and dynamic window approach. Besides, the proposed obstacle avoidance method was developed as one of the capabilities to enable each robot in a novel robotic system, namely the Self-reconfigurable and Transformable Omni-Directional Robotic Modules (STORM), to navigate intelligently and safely in an unknown environment. A well-conceived hardware and software architecture with features that enable further expansion and parallel development designed for the ongoing STORM projects is also presented in this work. A virtual STORM module with skid-steer kinematics was simulated in Gazebo to reduce the gap between the simulations and the real-world implementations. Moreover, comparisons among multiple training runs of the neural networks with different parameters related to balance the exploitation and exploration during the training process, as well as tests and experiments conducted in both simulation and real-world, are presented in detail. Directions for future research are also provided in the paper.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] An Aircraft Collision Avoidance Method Based on Deep Reinforcement Learning
    Liu, Zuocheng
    Neretin, Evgeny
    Gao, Xiaoguang
    Wan, Kaifang
    [J]. 2024 9TH INTERNATIONAL CONFERENCE ON CONTROL AND ROBOTICS ENGINEERING, ICCRE 2024, 2024, : 241 - 246
  • [2] Research on Method of Collision Avoidance Planning for UUV Based on Deep Reinforcement Learning
    Gao, Wei
    Han, Mengxue
    Wang, Zhao
    Deng, Lihui
    Wang, Hongjian
    Ren, Jingfei
    [J]. JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (12)
  • [3] A learning method for AUV collision avoidance through deep reinforcement learning
    Xu, Jian
    Huang, Fei
    Wu, Di
    Cui, Yunfei
    Yan, Zheping
    Du, Xue
    [J]. OCEAN ENGINEERING, 2022, 260
  • [4] A Deep Reinforcement Learning Method for Mobile Robot Collision Avoidance based on Double DQN
    Xue, Xidi
    Li, Zhan
    Zhang, Dongsheng
    Yan, Yingxin
    [J]. 2019 IEEE 28TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2019, : 2131 - 2136
  • [5] Deep-Reinforcement-Learning-Based Collision Avoidance in UAV Environment
    Ouahouah, Sihem
    Bagaa, Miloud
    Prados-Garzon, Jonathan
    Taleb, Tarik
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (06) : 4015 - 4030
  • [6] Deep reinforcement learning based collision avoidance system for autonomous ships
    Wang, Yong
    Xu, Haixiang
    Feng, Hui
    He, Jianhua
    Yang, Haojie
    Li, Fen
    Yang, Zhen
    [J]. OCEAN ENGINEERING, 2024, 292
  • [7] CONTROL METHOD FOR PATH FOLLOWING AND COLLISION AVOIDANCE OF AUTONOMOUS SHIP BASED ON DEEP REINFORCEMENT LEARNING
    Zhao, Luman
    Roh, Myung-Il
    Lee, Sung-Jun
    [J]. JOURNAL OF MARINE SCIENCE AND TECHNOLOGY-TAIWAN, 2019, 27 (04): : 293 - 310
  • [8] Deep reinforcement learning-based collision avoidance for an autonomous ship
    Chun, Do-Hyun
    Roh, Myung-Il
    Lee, Hye-Won
    Ha, Jisang
    Yu, Donghun
    [J]. OCEAN ENGINEERING, 2021, 234
  • [9] Real-time planning and collision avoidance control method based on deep reinforcement learning
    Xu, Xinli
    Cai, Peng
    Cao, Yunlong
    Chu, Zhenzhong
    Zhu, Wenbo
    Zhang, Weidong
    [J]. OCEAN ENGINEERING, 2023, 281
  • [10] Deep Reinforcement Learning for Collision Avoidance of Robotic Manipulators
    Sangiovanni, Bianca
    Rendiniello, Angelo
    Incremona, Gian Paolo
    Ferrara, Antonella
    Piastra, Marco
    [J]. 2018 EUROPEAN CONTROL CONFERENCE (ECC), 2018, : 2063 - 2068