Analyzing Clinical Practice Guidelines Using a Decidable Metric Interval-Based Temporal Logic

被引:0
|
作者
Sanati, Morteza Yousef [1 ,2 ]
MacCaull, Wendy [3 ]
Maibaum, Thomas S. E. [1 ]
机构
[1] McMaster Univ, Dept Comp & Software, Hamilton, ON L8S 4L8, Canada
[2] Bu Ali Sina Univ, Dept Comp Sci, Hamadan, Iran
[3] St Francis Xavier Univ, Dept Math Stat & Comp Sci, Antigonish, NS, Canada
来源
FM 2014: FORMAL METHODS | 2014年 / 8442卷
关键词
Clinical Practice Guidelines; Metric interval-based temporal logic; Tableau-based satisfiability checking; Guideline modelling; MEDICAL GUIDELINES; QUALITY CHECKING;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A Clinical Practice Guideline defines best practices to be followed by clinicians to manage a particular disease. Checking the quality of such guidelines is a very important issue, e. g., designers of the guidelines should ensure their consistency. A formal modelling approach is an appropriate choice due to the complexity of these guidelines. In this paper, we develop a metric interval-based temporal logic, which is suitable for such modelling and then propose a method for checking the satisfiability of such guidelines, to assure their consistency. As a case study, we use the logic to model a real-life guideline, the Active Tuberculosis Diagnosis guideline.
引用
收藏
页码:611 / 626
页数:16
相关论文
共 50 条
  • [1] AN INTERVAL-BASED TEMPORAL LOGIC
    SCHWARTZ, RL
    MELLIARSMITH, PM
    VOGT, FH
    [J]. LECTURE NOTES IN COMPUTER SCIENCE, 1984, 164 : 443 - 457
  • [2] Managing tasks using an interval-based temporal logic
    Das, SK
    Hammond, P
    [J]. APPLIED INTELLIGENCE, 1996, 6 (04) : 311 - 323
  • [3] AN INTERVAL-BASED TEMPORAL LOGIC IN A MULTIVALUED SETTING
    BAUER, M
    [J]. LECTURE NOTES IN ARTIFICIAL INTELLIGENCE, 1992, 607 : 355 - 369
  • [4] Constraint deduction in an interval-based temporal logic
    Koehler, J
    Treinen, R
    [J]. EXECUTABLE MODAL AND TEMPORAL LOGICS, 1995, 897 : 103 - 117
  • [5] Partially Punctual Metric Temporal Logic is Decidable
    Madnani, Khushraj
    Krishna, Shankara Narayanan
    Pandya, Paritosh K.
    [J]. 2014 21ST INTERNATIONAL SYMPOSIUM ON TEMPORAL REPRESENTATION AND REASONING (TIME 2014), 2014, : 174 - +
  • [6] Safety metric temporal logic is fully decidable
    Ouaknine, Joel
    Worrell, James
    [J]. TOOLS AND ALGORITHMS FOR THE CONSTRUCTION AND ANALYSIS OF SYSTEMS, PROCEEDINGS, 2006, 3920 : 411 - 425
  • [7] Timer formulas and decidable metric temporal logic
    Hirshfeld, Y
    Rabinovich, A
    [J]. INFORMATION AND COMPUTATION, 2005, 198 (02) : 148 - 178
  • [8] Parametric Metric Interval Temporal Logic
    Di Giampaolo, Barbara
    La Torre, Salvatore
    Napoli, Margherita
    [J]. LANGUAGE AND AUTOMATA THEORY AND APPLICATIONS, 2010, 6031 : 249 - 260
  • [9] Parametric metric interval temporal logic
    Di Giampaolo, Barbara
    La Torre, Salvatore
    Napoli, Margherita
    [J]. THEORETICAL COMPUTER SCIENCE, 2015, 564 : 131 - 148
  • [10] Begin, After, and Later: a Maximal Decidable Interval Temporal Logic
    Bresolin, Davide
    Sala, Pietro
    Sciavicco, Guido
    [J]. ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2010, (25): : 72 - 88