The Pascal Visual Object Classes (VOC) Challenge

被引:8336
|
作者
Everingham, Mark [1 ]
Van Gool, Luc [2 ]
Williams, Christopher K. I. [3 ]
Winn, John [4 ]
Zisserman, Andrew [5 ]
机构
[1] Univ Leeds, Leeds, W Yorkshire, England
[2] Katholieke Univ Leuven, Louvain, Belgium
[3] Univ Edinburgh, Edinburgh, Midlothian, Scotland
[4] Microsoft Res, Cambridge, England
[5] Univ Oxford, Oxford, England
关键词
Database; Benchmark; Object recognition; Object detection; FEATURES;
D O I
10.1007/s11263-009-0275-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Pascal Visual Object Classes (VOC) challenge is a benchmark in visual object category recognition and detection, providing the vision and machine learning communities with a standard dataset of images and annotation, and standard evaluation procedures. Organised annually from 2005 to present, the challenge and its associated dataset has become accepted as the benchmark for object detection. This paper describes the dataset and evaluation procedure. We review the state-of-the-art in evaluated methods for both classification and detection, analyse whether the methods are statistically different, what they are learning from the images (e.g. the object or its context), and what the methods find easy or confuse. The paper concludes with lessons learnt in the three year history of the challenge, and proposes directions for future improvement and extension.
引用
收藏
页码:303 / 338
页数:36
相关论文
共 50 条
  • [1] The Pascal Visual Object Classes (VOC) Challenge
    Mark Everingham
    Luc Van Gool
    Christopher K. I. Williams
    John Winn
    Andrew Zisserman
    [J]. International Journal of Computer Vision, 2010, 88 : 303 - 338
  • [2] The Pascal Visual Object Classes Challenge: A Retrospective
    Mark Everingham
    S. M. Ali Eslami
    Luc Van Gool
    Christopher K. I. Williams
    John Winn
    Andrew Zisserman
    [J]. International Journal of Computer Vision, 2015, 111 : 98 - 136
  • [3] The PASCAL Visual Object Classes Challenge: A Retrospective
    Everingham, Mark
    Eslami, S. M. Ali
    Van Gool, Luc
    Williams, Christopher K. I.
    Winn, John
    Zisserman, Andrew
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2015, 111 (01) : 98 - 136
  • [4] The 2005 PASCAL visual object classes challenge
    Everingham, Mark
    Zisserman, Andrew
    Williams, Christopher K. I.
    Van Gool, Luc
    Allan, Moray
    Bishop, Christopher M.
    Chapelle, Olivier
    Dalal, Navneet
    Deselaers, Thomas
    Dorko, Gyuri
    Duffner, Stefan
    Eichhorn, Jan
    Farquhar, Jason D. R.
    Fritz, Mario
    Garcia, Christophe
    Griffiths, Tom
    Jurie, Frederic
    Keysers, Daniel
    Koskela, Markus
    Laaksonen, Jorma
    Larlus, Diane
    Leibe, Bastian
    Meng, Hongying
    Ney, Hermann
    Schiele, Bernt
    Schmid, Cordelia
    Seemann, Edgar
    Shawe-Taylor, John
    Storkey, Amos
    Szedmak, Sandor
    Triggs, Bill
    Ulusoy, Ilkay
    Viitaniemi, Ville
    Zhang, Jianguo
    [J]. MACHINE LEARNING CHALLENGES: EVALUATING PREDICTIVE UNCERTAINTY VISUAL OBJECT CLASSIFICATION AND RECOGNIZING TEXTUAL ENTAILMENT, 2006, 3944 : 117 - 176
  • [5] Evaluation of maritime object detection methods for full motion video applications using the PASCAL VOC Challenge framework
    Jaszewski, Martin
    Parameswaran, Shibin
    Hallenborg, Eric
    Bagnall, Bryan
    [J]. VIDEO SURVEILLANCE AND TRANSPORTATION IMAGING APPLICATIONS 2015, 2015, 9407
  • [6] Reconstructing PASCAL VOC
    Vicente, Sara
    Carreira, Joao
    Agapito, Lourdes
    Batista, Jorge
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 41 - 48
  • [7] The concept of visual classes for object classification
    Schiele, B
    Crowley, JL
    [J]. SCIA '97 - PROCEEDINGS OF THE 10TH SCANDINAVIAN CONFERENCE ON IMAGE ANALYSIS, VOLS 1 AND 2, 1997, : 43 - 50
  • [8] Rethinking PASCAL-VOC and MS-COCO dataset for small object detection
    Tong, Kang
    Wu, Yiquan
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 93
  • [9] Joint learning of visual attributes, object classes and visual saliency
    Wang, Gang
    Forsyth, David
    [J]. 2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, : 537 - 544
  • [10] Visual object tracking: Progress, challenge, and future
    Zhang, Libo
    Fan, Heng
    [J]. INNOVATION, 2023, 4 (02):