Clustering Point Trajectories with Various Life-Spans
被引:17
|
作者:
Fradet, Matthieu
论文数: 0引用数: 0
h-index: 0
机构:
Thomson R&D France SNC, 1 Av Belle Fontaine CS 17616, F-35576 Cesson Sevigne, FranceThomson R&D France SNC, 1 Av Belle Fontaine CS 17616, F-35576 Cesson Sevigne, France
Fradet, Matthieu
[1
]
Robert, Philippe
论文数: 0引用数: 0
h-index: 0
机构:
Thomson R&D France SNC, 1 Av Belle Fontaine CS 17616, F-35576 Cesson Sevigne, FranceThomson R&D France SNC, 1 Av Belle Fontaine CS 17616, F-35576 Cesson Sevigne, France
Robert, Philippe
[1
]
Perez, Patrick
论文数: 0引用数: 0
h-index: 0
机构:
INRIA Rennes Bretagne Atlantique, Rennes, FranceThomson R&D France SNC, 1 Av Belle Fontaine CS 17616, F-35576 Cesson Sevigne, France
Perez, Patrick
[2
]
机构:
[1] Thomson R&D France SNC, 1 Av Belle Fontaine CS 17616, F-35576 Cesson Sevigne, France
[2] INRIA Rennes Bretagne Atlantique, Rennes, France
motion segmentation;
point trajectories;
clustering;
J-linkage;
SEGMENTATION;
MOTION;
D O I:
10.1109/CVMP.2009.24
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
Motion-based segmentation of a sequence of images is an essential step for many applications of video analysis, including action recognition and surveillance. This paper introduces a new approach to motion segmentation operating on point trajectories. Each of these trajectories has its own start and end instants, hence its own life-span, depending on the pose and appearance changes of the object it belongs to. A set of such trajectories is obtained by tracking sparse interest points. Based on an adaptation of recently proposed J-linkage method, these trajectories are then clustered using series of affine motion models estimated between consecutive instants, and an appropriate residual that can handle trajectories with various life-spans. Our approach does not require any completion of trajectories whose life-span is shorter than the sequence of interest. We evaluate the performance of the single cue of motion, without considering spatial prior and appearance. Using a standard test set, we validate our new algorithm and compare it to existing ones. Experimental results on a variety of challenging real sequences demonstrate the potential of our approach.
机构:
Harvard Univ, Sch Med, Dept Hlth Care Policy, Inst Quantitat Social Sci, Boston, MA 02115 USAHarvard Univ, Sch Med, Dept Hlth Care Policy, Inst Quantitat Social Sci, Boston, MA 02115 USA
机构:
UMDNJ, New Jersey Med Sch, Dept Prevent Med & Community Hlth, Newark, NJ 07107 USAUMDNJ, New Jersey Med Sch, Dept Prevent Med & Community Hlth, Newark, NJ 07107 USA