On irreducibility of modules of Whittaker type for cyclic orbifold vertex algebras

被引:11
|
作者
Adamovic, Drazen [1 ]
Lam, Ching Hung [2 ]
Pedic, Veronika [1 ]
Yu, Nina [3 ]
机构
[1] Univ Zagreb, Fac Sci, Dept Math, Bijenicka 30, Zagreb 10000, Croatia
[2] Acad Sinica, Inst Math, Taipei 10617, Taiwan
[3] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
关键词
Vertex algebra; Whittaker module; OPERATOR ALGEBRA; FUSION RULES; WEIGHT MODULES; RANK; CLASSIFICATION; V-L(+); REPRESENTATIONS; RATIONALITY; M(1)(+);
D O I
10.1016/j.jalgebra.2019.08.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the Dong-Mason theorem on irreducibility of modules for orbifold vertex algebras (cf. [18]) to the category of weak modules. Let V be a vertex operator algebra, g an automorphism of order p. Let W be an irreducible weak V-module such that W, W circle g, ...,W circle g(p-1) are inequivalent irreducible modules. We prove that W is an irreducible weak V(< g >)module. This result can be applied on irreducible modules of certain Lie algebra L such that W, W circle g, ..., W circle g(p-1) are Whittaker modules having different Whittaker functions. We present certain applications in the cases of the Heisenberg and Weyl vertex operator algebras. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 50 条