SETS AVOIDING SIX-TERM ARITHMETIC PROGRESSIONS IN Z6n ARE EXPONENTIALLY SMALL

被引:1
|
作者
Pach, Peter Pal [1 ,2 ]
Palincza, Richard [1 ,2 ]
机构
[1] Budapest Univ Technol & Econ, Dept Comp Sci & Informat Theory, H-1111 Budapest, Hungary
[2] ELKH, MTA BME Lendulet Arithmet Combinator Res Grp, H-1111 Budapest, Hungary
关键词
arithmetic progressions; polynomial method; supersaturation;
D O I
10.1137/21M1413766
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that sets avoiding six-term arithmetic progressions in Z(6)(n) have size at most 5.709n. It is also pointed out that the "product construction"" does not work in this setting; in particular we show that for the extremal sizes in small dimensions we have r(6) (Z(6)) = 5, r(6) (Z(6)(2)) = 25, and 117 <= r(6) (Z(6)(n)) <= 124.
引用
收藏
页码:1135 / 1142
页数:8
相关论文
共 3 条